986 resultados para carbon neutral


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report analyses the coastal and human settlements, tourism and transport sectors in Barbados to assess the potential economic impact of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Barbados. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050 (tourism and transport sectors) and 2100 (coastal and human settlements sector). An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The analysis has shown that based upon exposed assets and population, SLR can be classified as having the potential to create potential catastrophe in Barbados. The main contributing factor is the concentration of socioeconomic infrastructure along the coastline in vulnerable areas. The A2 and B2 projections have indicated that the number of catastrophes that can be classified as great is likely to be increased for the country. This is based upon the possible effects of the projected unscheduled impacts to the economy both in terms of loss of life and economic infrastructure. These results arise from the A2 and B2 projections, thereby indicating that growth in numbers and losses are largely due to socioeconomic changes over the projection period and hence the need for increased adaptation strategies. A key adaptation measure recommended is for the government of Barbados to begin reducing the infrastructure deficit by continuously investing in protective infrastructure to decrease the country’s vulnerability to changes in the climate. With regard to the tourism sector, it was found that by combining the impacts due to a reduction in tourist arrivals, coral reef loss and SLR, estimated total economic impact of climate change is US $7,648 million (A2 scenario) and US $5,127 million (B2 scenario). An economic analysis of the benefits and costs of several adaptation options was undertaken to determine the cost effectiveness of each one and it was found that four (4) out of nine (9) options had high cost-benefit ratios. It is therefore recommended that the strategies that were most attractive in terms of the cost-benefit ratios be pursued first and these were: (1) enhanced reef monitoring systems to provide early warning alerts of bleaching events; (2) artificial reefs or fish-aggregating devices; (3) development of national adaptation plans (levee, sea wall and boardwalk); (4) revision of policies related to financing carbon neutral tourism; and (5) increasing recommended design wind speeds for new tourism-related structures. The total cost of climate change on international transportation in Barbados aggregated the impacts of changes in temperature and precipitation, new climate policies and SLR. The impact for air transportation ranges from US$10,727 million (B2 scenario) to US$12,279 million (A2 scenario) and for maritime transportation impact estimates range from US$1,992 million (B2 scenario) to US$2,606 million (A2 scenario). For international transportation as a whole, the impact of climate change varies from US$12,719 million under the B2 scenario to US$14,885 million under the A2 scenario. Barbados has the institutions set up to implement adaptive strategies to strengthen the resilience of the existing international transportation system to climate change impacts. Air and sea terminals and facilities can be made more robust, raised, or even relocated as need be, and where critical to safety and mobility, expanded redundant systems may be considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluxes of CO2 were measured above a sugarcane plantation using the eddy-covariance method covering two growth cycles, representing the second and third re-growth (ratoons) harvested with stubble burning. The total net ecosystem exchange (NEE) in the first cycle (second ratoon, 393 days long) was −1964 ± 44 g C m−2; the gross ecosystem productivity (GEP) was 3612 ± 46 g C m−2 and the ecosystem respiration (RE) was 1648 ± 14 g C m−2. The NEE and GEP totals in the second cycle (third ratoon, 374 days long) decreased 51% and 25%, respectively and RE increased 7%. Accounting for the carbon emitted during biomass burning and the removal of stalks at harvest, net ecosystem carbon balance (NECB) totals were 102 ± 130 g C m−2 and 403 ± 84 g C m−2 in each cycle respectively. Thus the sugarcane agrosystem was approximately carbon neutral in the second ratoon. Yield in stalks fresh weight (SFW) attained the regional average (8.3 kg SFW m−2). Although it was a carbon source to the atmosphere, observed productivity (6.2 kg SFW m−2) of the third ratoon was 19% lower than the regional average due to the lower water availability observed during the initial 120 days of re-growth. However, the overall water use efficiency (WUE) achieved in the first cycle (4.3 g C kg−1 H2O) decreased only 5% in the second cycle. © 2013 Elsevier B.V. All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews nitrogen (N) cycle of effluent-irrigated energy crop plantations, starting from wastewater treatment to thermo-chemical conversion processes. In wastewater, N compounds contribute to eutrophication and toxicity in water cycle. Removal of N via vegetative filters and specifically in short-rotation energy plantations, is a relatively new approach to managing nitrogenous effluents. Though combustion of energy crops is in principle carbon neutral, in practice, N content may contribute to NOx emissions with significant global warming potential. Intermediate pyrolysis produces advanced fuels while reducing such emissions. By operating at intermediate temperature (500°C), it retains most N in char as pyrrolic-N, pyridinic-N, quaternary-N and amines. In addition, biochar provides long-term sequestration of carbon in soils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As an alternative fuel for compression ignition engines, plant oils are in principle renewable and carbon-neutral. However, their use raises technical, economic and environmental issues. A comprehensive and up-to-date technical review of using both edible and non-edible plant oils (either pure or as blends with fossil diesel) in CI engines, based on comparisons with standard diesel fuel, has been carried out. The properties of several plant oils, and the results of engine tests using them, are reviewed based on the literature. Findings regarding engine performance, exhaust emissions and engine durability are collated. The causes of technical problems arising from the use of various oils are discussed, as are the modifications to oil and engine employed to alleviate these problems. The review shows that a number of plant oils can be used satisfactorily in CI engines, without transesterification, by preheating the oil and/or modifying the engine parameters and the maintenance schedule. As regards life-cycle energy and greenhouse gas emission analyses, these reveal considerable advantages of raw plant oils over fossil diesel and biodiesel. Typical results show that the life-cycle output-to-input energy ratio of raw plant oil is around 6 times higher than fossil diesel. Depending on either primary energy or fossil energy requirements, the life-cycle energy ratio of raw plant oil is in the range of 2–6 times higher than corresponding biodiesel. Moreover, raw plant oil has the highest potential of reducing life-cycle GHG emissions as compared to biodiesel and fossil diesel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dyer, along with many others reflecting international consensus in the scientific community, argues that countries must be carbon neutral by 2050 to avoid the worst impacts of climate change (Dyer, 2008, p. xii). to accomplish this by 2050, we need to act now: governments need to cooperate with the scientific community to ensure our society makes the changes to combat climate change. How is Canada reacting to this situation? As describes by the Sierra Club of Canada, "federal government continues to drag its feet, and delay any action to reduce emissions" (2008, p. 18). Given this federal reluctance, individual provinces must act to reduce emissions. While some provinces take a required action, primarily Quebec and British Columbia, others, like Newfoundland and Labrador, contribute little in terms of emissions reductions. Newfoundland and Labrador is ranked as "poor"-among the worst performers regarding climate change policy in the country-by the David Suzuki Foundation in a cross Canada evaluation of various provincial climate change policies (David Suzuki Foundation, 2008, p. 9). The Province of Newfoundland is not doing enough to address climate change. In this paper I argue that to improve this situation, the province could follow the example of the two leading jurisdictions, Quebec and British Columbia, to refine and introduce its own hybrid policy that directly affects decision making processes. But, this can be complicated when convincing the government that it is important to accept stronger policy. The government must consider what climate change impacts Newfoundland and Labrador experiences and willconinue to experience and what Newfoundland and Labrador is contributing to the problem of climate change. To evaluate these issues of climate change, I first survey the positive policies Newfoundland and Labrador is currently implementing/ discussing and then outline action taken by the provincial environment leaders, Quebec and British Columbia.Then I describe the strong pieces in the Quebec and British Columbia climate change action plan that Newfoundland and Labrador can emulate. Finally, I consider if thes polices are politically feasible for the government of Newfoundland and labrador. Hence, this paper aims to give a blueprint of what Newfoundland and Labrador has to act on to make itself an environmental leader.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With growing demand for liquefied natural gas (LNG) and liquid transportation fuels, and concerns about climate change and causes of greenhouse gas emissions, this master’s thesis introduces a new value chain design for LNG and transportation fuels and respective fundamental business cases based on hybrid PV-Wind power plants. The value chains are composed of renewable electricity (RE) converted by power-to-gas (PtG), gas-to-liquids (GtL) or power-to-liquids (PtL) facilities into SNG (which is finally liquefied into LNG) or synthetic liquid fuels, mainly diesel, respectively. The RE-LNG or RE-diesel are drop-in fuels to the current energy system and can be traded everywhere in the world. The calculations for the hybrid PV-Wind power plants, electrolysis, methanation (H2tSNG), hydrogen-to-liquids (H2tL), GtL and LNG value chain are performed based on both annual full load hours (FLh) and hourly analysis. Results show that the proposed RE-LNG produced in Patagonia, as the study case, is competitive with conventional LNG in Japan for crude oil prices within a minimum price range of about 87 - 145 USD/barrel (20 – 26 USD/MBtu of LNG production cost) and the proposed RE-diesel is competitive with conventional diesel in the European Union (EU) for crude oil prices within a minimum price range of about 79 - 135 USD/barrel (0.44 – 0.75 €/l of diesel production cost), depending on the chosen specific value chain and assumptions for cost of capital, available oxygen sales and CO2 emission costs. RE-LNG or RE-diesel could become competitive with conventional fuels from an economic perspective, while removing environmental concerns. The RE-PtX value chain needs to be located at the best complementing solar and wind sites in the world combined with a de-risking strategy. This could be an opportunity for many countries to satisfy their fuel demand locally. It is also a specific business case for countries with excellent solar and wind resources to export carbon-neutral hydrocarbons, when the decrease in production cost is considerably more than the shipping cost. This is a unique opportunity to export carbon-neutral hydrocarbons around the world where the environmental limitations on conventional hydrocarbons are getting tighter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tavoitteena oleva hiilineutraali energiantuotanto muokkaa sähköntuotannosta sykkivämpää ja vaatii kulutuksen sopeutumista siihen. Tämä synnyttää tarpeen kansallisia markkinoita laajemmille sähkön vähittäismarkkinoille ja vaatii kuluttajilta aktiivisempaa roolia markkinoilla. Pohjoismaiset kantaverkkoyhtiöt ovat alkaneet valmistella pohjoismaisia sähkömarkkinoita sähkön vähittäiskaupan avaamiselle. Sähkön vähittäiskaupan avautuminen eri maiden välillä vaatii kansallisten markkinamenetelmien yhtenäistämistä varsinkin taseselvityksen ja tiedonvaihdon osalta. Tässä työssä tutkitaan Suomessa vuonna 2019 käyttöönotettavan keskitetyn tiedonvaihtojärjestelmän, Datahubin, vaikutuksia jakeluverkonhaltijalle. Vaikutuksia tarkastellaan Vantaan Energia Sähköverkot Oy:n näkökulmasta. Työssä kartoitetaan jakeluverkonhaltijan nykyisiä liiketoiminnan pääprosesseja ja niihin liittyvää tiedonvaihtoa eri markkinaosapuolten kanssa prosessien toteutuksessa. Lisäksi työssä esitellään jakeluverkonhaltijan nykyisten liiketoiminnan pääprosessien toteuttaminen Datahubissa. Jakeluverkonhaltijan liiketoiminnan nykyisiä pääprosesseja ja tiedonvaihtoa verrataan Datahubin kautta suoritettaviin prosesseihin. Työssä todettiin Datahubin korjaavan jakeluverkonhaltijan liiketoiminannan nykyisissä pääprosesseissa havaittuja ongelmia ja mahdollistavan prosessien tehostamisen. Datahub ei sinällään muuta nykyisiä jakeluverkonhaltijan liiketoimintaprosesseja merkittävästi, mutta mahdollistaa prosessien kehittämisen markkinoiden muutoksen mukana. Datahubin kokonaisvaltainen hyödyntäminen on toimijoiden itsensä käsissä, niiltä osin, kun sähkömarkkinalaki ei velvoita tiettyyn toimintamalliin. Jakeluverkonhaltijan liiketoimintaprosessien osalta suurin muutos kohdistuu jakeluverkonhaltijan taseselvitykseen, joka siirtyy kokonaisuudessaan Datahubin tehtäväksi. Datahub tulee kaventamaan jakeluverkonhaltijan roolia markkinapaikalla ja siksi jakeluverkonhaltijoiden tulisi kartoittaa liiketoiminnan laajentamisen tarvetta ja mahdollisuuksia tulevaisuudessa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A promising strategy to mitigate both the energy crisis and global warming is the development of solar fuels and chemicals using as feedstock CO2 in combination with simple molecules such as water. This process stores the solar energy into chemical bonds, leading to a carbon-neutral approach of fuels and chemicals production. Aim of this thesis was the synthesis and characterization of CaCu3Ti4O12 (CCTO)- based compounds to be used as visible light photocatalyst for CO2 to chemical conversion. Different compositions were produced doping CCTO with increasing concentration of iron into the perovskite’s A site in order to identify the materials with the highest photo- and photoelectrocatalytic properties. The most promising compositions were used to produce photoelectrodes by screen printing that were characterized by linear and cyclic voltammetry, impedance spectroscopy and Mott-Schottky analysis to evaluate the electrical conductivity and calculate the flat band potential and the number of charge carriers in the samples. The photoelectrodes were then tested in a photoelectrochemical (PEC) cell for the conversion of CO2 into fuel and chemicals. The results obtained confirm that CCTO-based materials can be considered promising materials for carbon dioxide photo-electrochemical reduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrocatalytic reduction of CO2 (CO2RR) is a captivating strategy for the conversion of CO2 into fuels, to realize a carbon neutral circular economy. In the recent years, research has focused on the development of new materials and technology capable of capturing and converting CO2 into useful products. The main problem of CO2RR is given by its poor selectivity, which can lead to the formation of numerous reaction products, to the detriment of efficiencies. For this reason, the design of new electrocatalysts that selectively and efficiently reduce CO2 is a fundamental step for the future exploitation of this technology. Here we present a new class of electrocatalysts, designed with a modular approach, namely, deriving from the combination of different building blocks in a single nanostructure. With this approach it is possible to obtain materials with an innovative design and new functionalities, where the interconnections between the various components are essential to obtain a highly selective and efficient reduction of CO2, thus opening up new possibilities in the design of optimized electrocatalytic materials. By combining the unique physic-chemical properties of carbon nanostructures (CNS) with nanocrystalline metal oxides (MO), we were able to modulate the selectivity of CO2RR, with the production of formic acid and syngas at low overpotentials. The CNS have not only the task of stabilizing the MO nanoparticles, but the creation of an optimal interface between two nanostructures is able to improve the catalytic activity of the active phase of the material. While the presence of oxygen atoms in the MO creates defects that accelerate the reaction kinetics and stabilize certain reaction intermediates, selecting the reaction pathway. Finally, a part was dedicated to the study of the experimental parameters influencing the CO2RR, with the aim of improving the experimental setup in order to obtain commercial catalytic performances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By investigating the inner working of leading financial institutions, and their dense interconnections, this thesis explores the evolution of traditional financial instruments like bonds to tackle sustainability issues. Building on fieldwork among green financiers, the thesis is based upon participant observation of working groups appointed to define standards for sustainable bonds. Engaging critical theory, one claim is that investors are increasingly recruited or interpellated by an emerging global green ideological apparatus, aimed at ensuring the reproduction of existing social relations. Taking stock of the proliferation of both public and private actors in the definition of green standards and practices, the thesis proposes that this green ideology is becoming hegemonic. Focusing on the case of green bond pricing, it suggests that environmental and climate labels and other financial green signifiers for financial products take on brand-like qualities. Crystallizing imaginaries, meanings, and forms of personhood, they play a fundamental role in what is defined as a dual process of valuation-cum-subjectivation. Identifying themselves as “green”, financiers valuate differently green and brown assets allowing a ‘green’ financial value to slowly come to matter. Yet, alongside their ideological role, green labels have come to be almost exclusively standardized with reference to specific Climate Scenarios (e.g. Net Zero). These scenarios coordinate the optimal path towards achieving a carbon neutral world and represent the quintessential example of socioeconomic planning, crucially undermining neoliberal ideas of ‘the market’ as the ultimate calculative device.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The climate crisis is the greatest challenge humanity has ever faced, and in 2023 the average global temperature reached new records, prompting the UN Secretary General to declare that 'the era of global warming is over, and the era of global boiling has arrived'. In this context, urban areas play a key role, and can be considered a bottleneck of the climate crisis. The European Commission is investing billions of euros in research and innovation projects in urban areas, while the European Green Deal strategy has the ambition of making Europe the first carbon-neutral continent on the planet by 2050. However, studies and research show that the causes of the climate crisis are rooted in an economic system that produces profound inequalities, and the very solutions to address the consequences of global warming risk deepening them. In this context, the role of cities is not only to decarbonise their urban fabric, but to build solutions to the social challenge posed by the climate crisis, promoting paradigm shifts capable of producing trajectories towards so-called 'climate justice'. This research analyses, through a holistic view, European policies in these fields, and delves into the actions and projects of four European cities - Amsterdam, Bilbao, Freiburg, and Lisbon - through a qualitative approach aimed at identifying strengths and contradictions of strategies to tackle the climate crisis. Delving into the collective dynamics and social impacts of the actions promoted, the research proposes a comprehensive view of the role that urban areas can play not only in decarbonising society, but in promoting a paradigm shift capable of addressing the economic causes and social consequences of the climate crisis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current environmental and socio-economic situation promotes the development of carbon-neutral and sustainable solutions for energy supply. In this framework, the use of hydrogen has been largely indicated as a promising alternative. However, safety aspects are of concern for storage and transportation technologies. Indeed, the current know-how promotes its transportation via pipeline as compressed gas. However, the peculiar properties of hydrogen make the selection of suitable materials challenging. For these reasons, dilution with less reactive species has been considered a short and medium solution. As a way of example, methane-hydrogen mixtures are currently transported via pipelines. In this case, the hydrogen content is limited to 20% in volume, thus keeping the dependence on natural gas sources. On the contrary, hydrogen can be conveniently transported by mixing it with carbon dioxide deriving from carbon capture and storage technologies. In this sense, the interactions between hydrogen and carbon dioxide have been poorly studied. In particular, the effects of composition and operative conditions in the case of accidental release or for direct use in the energy supply chain are unknown. For these reasons, the present work was devoted to the characterization of the chemical phenomena ruling the system. To this aim, laminar flames containing hydrogen and carbon dioxide in the air were investigated experimentally and numerically. Different detailed kinetic mechanisms largely validated were considered at this stage. Significant discrepancies were observed among numerical and experimental data, especially once a fuel consisting of 40%v of hydrogen was studied. This deviation was attributed to the formation of a cellular flame increasing the overall reactivity. Hence, this observation suggests the need for combined models accounting for peculiar physical phenomena and detailed kinetic mechanisms characterizing the hydrogen-containing flames.