998 resultados para carbon:nitrogen ratio


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large number of samples of nonlithified and lithified sediments from Leg 93 sites were analyzed for their contents of organic carbon and calcium carbonate. An average of two samples was selected from every core for carbonate determination; organic carbon was measured in most of these samples. Nearly all of these analyses were performed on board Glomar Challenger for samples from Sites 603 and 604. Site 605 samples, plus some of the deeper samples from Hole 603B, were analyzed at the University of Michigan. The procedures used in both cases were virtually the same, and their results compared well. Organic carbon analyses were done using a Hewlett- Packard 185-B CHN Analyzer. Portions of samples selected for calcium carbonate determinations were treated with dilute HC1 to remove carbonate, washed with deionized water, and dried at 110°C. A Cahn Electrobalance was used to weight 20-mg samples of sediment for CHN analysis. Samples were combusted at 1050°C in the presence of an oxidant, and the volumes of the evolved gases determined as measures of the C, H, and N contents of sediment organic matter. Areas of gas peaks were determined and compared to those of rock standards of known carbon and nitrogen contents. These values were used to standardize instrument response so that C/N atomic ratios could be reported. Organic carbon concentrations were calculated on the basis of sediment dry weight. Hydrogen elemental analysis with the procedure used is untrustworthy because of the variable amounts of clay minerals and their hydrates, hence hydrogen values are not reported for samples analyzed by this method.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complex study of influence of various environmental factors on rates of oxygen (M_O2 ), ammonium (M_NH4), and phosphate (M_PO4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of the Kunashir Island. The following environmental factors have been included into the investigation: photosynthetically active radiation (PAR); ammonium (NH4); phosphate (PO4); and contents of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl) in tissue. Population of agar-containing seaweed A. tobuchiensis forms a layer with thickness up to 0.5 m, which occupies about 23.3 km**2; biomass is equal to 125000 tons. Quantitative assessment of organic matter production and nutrient consumption during oxygen metabolism has been carried out for the whole population. It has been shown that daily oxygen metabolism depends on PAR intensity, concentrations of PO4 and NH4 in seawater, and contents of N and P in tissues (r**2=0.78, p<0.001). Average daily NH4 consumption is 0.21 µmol/g of dry weight/hour and depends on NH4 and O2 concentrations in seawater and on ? and Chl a contents in algal tissues (r**2=0.64, p<0.001). Average daily PO4 consumption is 0.01 µmol/g of dry weight/hour and depends on NH4 concentrations in seawater and on P contents in algal tissues (r**2=0.40, p<0.001).