958 resultados para car-following models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic safety studies mandate more than what existing micro-simulation models can offer as they postulate that every driver exhibits a safe behaviour. All the microscopic traffic simulation models are consisting of a car-following model and the Gazis–Herman–Rothery (GHR) car-following model is a widely used model. This paper highlights the limitations of the GHR car-following model capability to model longitudinal driving behaviour for safety study purposes. This study reviews and compares different version of the GHR model. To empower the GHR model on precise metrics reproduction a new set of car-following model parameters is offered to simulate unsafe vehicle conflicts. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time to Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against the generic versions of the GHR model. The results from simulation tests illustrate that the proposed model does predict the safety metrics better than the generic GHR model. Additionally it can potentially facilitate assessing and predicting traffic facilities’ safety using microscopic simulation. The new model can predict Near-miss rear-end crashes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Car following (CF) and lane changing (LC) are two primary driving tasks observed in traffic flow, and are thus vital components of traffic flow theories, traffic operation and control. Over the past decades a large number of CF models have been developed in an attempt to describe CF behaviour under a wide range of traffic conditions. Although CF has been widely studied for many years, LC did not receive much attention until recently. Over the last decade, researchers have slowly but surely realized the critical role that LC plays in traffic operations and traffic safety; this realization has motivated significant attempts to model LC decision-making and its impact on traffic. Despite notable progresses in modelling CF and LC, our knowledge on these two important issues remains incomplete because of issues related to data, model calibration and validation, human factors, just to name a few. Thus, this special issue will focus on latest developments in modelling, calibrating, and validating two primary vehicular interactions observed in traffic flow: CF and LC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluating the safety of different traffic facilities is a complex and crucial task. Microscopic simulation models have been widely used for traffic management but have been largely neglected in traffic safety studies. Micro simulation to study safety is more ethical and accessible than the traditional safety studies, which only assess historical crash data. However, current microscopic models are unable to mimic unsafe driver behavior, as they are based on presumptions of safe driver behavior. This highlights the need for a critical examination of the current microscopic models to determine which components and parameters have an effect on safety indicator reproduction. The question then arises whether these safety indicators are valid indicators of traffic safety. The safety indicators were therefore selected and tested for straight motorway segments in Brisbane, Australia. This test examined the capability of a micro-simulation model and presents a better understanding of micro-simulation models and how such models, in particular car following models can be enriched to present more accurate safety indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multitasking, such as the concurrent use of a mobile phone and operating a motor vehicle, is a significant distraction that impairs driving performance and is becoming a leading cause of motor vehicle crashes. This study investigates the impact of mobile phone conversations on car-following behaviour. The CARRS-Q Advanced Driving Simulator was used to test a group of young Australian drivers aged 18 to 26 years on a car-following task in three randomised phone conditions: baseline (no phone conversation), hands-free and handheld. Repeated measure ANOVA was applied to examine the effect of mobile phone distraction on selected car-following variables such as driving speed, spacing, and time headway. Overall, drivers tended to select slower driving speeds, larger vehicle spacings, and longer time headways when they were engaged in either hands-free or handheld phone conversations, suggesting possible risk compensatory behaviour. In addition, phone conversations while driving influenced car-following behaviour such that variability was increased in driving speeds, vehicle spacings, and acceleration and decelerations. To further investigate car-following behaviour of distracted drivers, driver time headways were modelled using Generalized Estimation Equation (GEE). After controlling for various exogenous factors, the model predicts an increase of 0.33 seconds in time headway when a driver is engaged in hands-free phone conversation and a 0.75 seconds increase for handheld phone conversation. The findings will improve the collective understanding of distraction on driving performance, in particular car following behaviour which is most critical in the determination of rear-end crashes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multitasking, such as the concurrent use of a mobile phone and operating a motor vehicle, is a significant distraction that impairs driving performance and is becoming a leading cause of motor vehicle crashes. This study investigates the impact of mobile phone conversations on car-following behaviour. The CARRS-Q Advanced Driving Simulator was used to test a group of young Australian drivers aged 18–26 years on a car-following task in three randomised phone conditions: baseline (no phone conversation), hands-free and handheld. Repeated measure ANOVA was applied to examine the effect of mobile phone distraction on selected car-following variables such as driving speed, spacing, and time headway. Overall, drivers tended to select slower driving speeds, larger vehicle spacings, and longer time headways when they were engaged in either hands-free or handheld phone conversations, suggesting possible risk compensatory behaviour. In addition, phone conversations while driving influenced car-following behaviour such that variability was increased in driving speeds, vehicle spacings, and acceleration and decelerations. To further investigate car-following behaviour of distracted drivers, driver time headways were modelled using Generalized Estimation Equation (GEE). After controlling for various exogenous factors, the model predicts an increase of 0.33 s in time headway when a driver is engaged in hands-free phone conversation and a 0.75 s increase for handheld phone conversation. The findings will improve the collective understanding of distraction on driving performance, in particular car following behaviour which is most critical in the determination of rear-end crashes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies traffic hysteresis arising in traffic oscillations from a behavioral perspective. It is found that the occurrence and type of traffic hysteresis is closely correlated with driver behavior when experiencing traffic oscillations and with the time driver reaction begins relative to the starting deceleration wave. Statistical results suggest that driver behavior is different depending on its position along the oscillation. This suggests that different car-following models should be used inside the different stages of an oscillation in order to replicate realistic congestion features.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For the evaluation, design, and planning of traffic facilities and measures, traffic simulation packages are the de facto tools for consultants, policy makers, and researchers. However, the available commercial simulation packages do not always offer the desired work flow and flexibility for academic research. In many cases, researchers resort to designing and building their own dedicated models, without an intrinsic incentive (or the practical means) to make the results available in the public domain. To make matters worse, a substantial part of these efforts pertains to rebuilding basic functionality and, in many respects, reinventing the wheel. This problem not only affects the research community but adversely affects the entire traffic simulation community and frustrates the development of traffic simulation in general. For this problem to be addressed, this paper describes an open source approach, OpenTraffic, which is being developed as a collaborative effort between the Queensland University of Technology, Australia; the National Institute of Informatics, Tokyo; and the Technical University of Delft, the Netherlands. The OpenTraffic simulation framework enables academies from geographic areas and disciplines within the traffic domain to work together and contribute to a specific topic of interest, ranging from travel choice behavior to car following, and from response to intelligent transportation systems to activity planning. The modular approach enables users of the software to focus on their area of interest, whereas other functional modules can be regarded as black boxes. Specific attention is paid to a standardization of data inputs and outputs for traffic simulations. Such standardization will allow the sharing of data with many existing commercial simulation packages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper comprehensively reviews recent developments in modeling lane-changing behavior. The major lane changing models in the literature are categorized into two groups: models that aim to capture the lane changing decision-making process, and models that aim to quantify the impact of lane changing behavior on surrounding vehicles. The methodologies and important features (including their limitations) of representative models in each category are outlined and discussed. Future research needs are determined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nesta dissertação consideramos duas abordagens para o tráfego de veículos: a macroscópica e a microscópica. O tráfego é descrito macroscopicamente por três grandezas físicas interligadas entre si, a saber, a velocidade, a densidade e o fluxo, descrevendo leis de conservação do número de veículos. Há vários modelos para o tráfego macroscópico de veículos. A maioria deles trata o tráfego de veículos como um fluido compressível, traduzindo a lei de conservação de massa para os veículos e requer uma lei de estado para o par velocidade-densidade, estabelecendo uma relação entre eles. Já o modelo descrito pela abordagem microscópica considera os veículos como partículas individuais. Consideramos os modelos da classe "car - following". Estes modelos baseiam-se no princípio de que o (n - 1)-ésimo veículo (denominado de "following-car") acelera em função do estímulo que recebe do n-ésimo veículo. Analisamos a equação de conservação do número de veículos em modelos macroscópicos para fluxo de tráfego. Posteriormente resolvemos esta equação através da linearização do modelo, estudando suas retas características e apresentamos a resolução do problema não linear em domínios limitados utilizando o método das características

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A total of 61,528 weight records from 22,246 Nellore animals born between 1984 and 2002 were used to compare different multiple-trait analysis methods for birth to mature weights. The following models were used: standard multivarite model (MV), five reduced-rank models fitting the first 1, 2, 3, 4 and 5 genetic principal components, and five models using factor analysis with 1, 2, 3, 4 and 5 factors. Direct additive genetic random effects and residual effects were included in all models. In addition, maternal genetic and maternal permanent environmental effects were included as random effects for birth and weaning weight. The models included contemporary group as fixed effect and age of animal at recording (except for birth weight) and age of dam at calving as linear and quadratic effects (for birth weight and weaning weight). The maternal genetic, maternal permanent environmental and residual (co)variance matrices were assumed to be full rank. According to model selection criteria, the model fitting the three first principal components (PC3) provided the best fit, without the need for factor analysis models. Similar estimates of phenotypic, direct additive and maternal genetic, maternal permanent environmental and residual (co)variances were obtained with models MV and PC3. Direct heritability ranged from 0.21 (birth weight) to 0.45 (weight at 6 years of age). The genetic and phenotypic correlations obtained with model PC3 were slightly higher than those estimated with model MV. In general, the reduced-rank model substantially decreased the number of parameters in the analyses without reducing the goodness-of-fit. © 2013 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars (Google driverless cars, http://en.wikipedia.org/wiki/Google_driverless_car). Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then chaos appears. We show that an infinite-dimensional version of the linear model presents a chaotic behaviour using the same approach as for studying chaos of death models of cell growth.