540 resultados para calving


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic parameters for the relation between the traits of milk yield (MY), age at first calving (AFC) and interval between first and second calving (IBFSC) were estimated in milk buffaloes of the Murrah breed. In the study, data of 1578 buffaloes at first lactation, with calvings from 1974 to 2006 were analyzed. The MTDFREML system was used in the analyses with models for the MY, IBFSC traits which included the fixed effects of herd-year-season of calving, linear and quadratic terms of calving age as covariate and the random animal effects and error. The model for AFC consisted of the herd-year-season fixed effects of calving and the random effects of animal and error. Heritability estimates MY, AFC and IBFSC traits were 0.20, 0.07 and 0.14, respectively. Genetic and phenotypic correlations between the traits were: MY and AFC = -0.12 and -0.15, MY and IBFSC = 0.07 and 0.30, AFC and IBFSC = 0.35 and 0.37, respectively. Genetic correlation between MY and AFC traits showed desirable negative association, suggesting that the daughters of the bulls with high breeding value for MY could be physiological maturity to a precocious age. Genetic correlation between MY and IBFSC showed that the selection of the animals that increased milk yield is also those that tend to intervals of bigger calving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to determine whether there is a genotype x environment interaction for age at first calving (AFC) in Holstein cattle in Brazil and Colombia. Data included 51,239 and 25,569 first-lactation records from Brazil and Colombia, respectively. Of 4230 sires in the data, 530 were North American sires used in both countries. Analyses were done using the REML bi-trait animal model, and AFC was considered as a distinct characteristic in each country. Fixed effects of contemporary group (herd-calving year), sire genetic group, and cow genetic group, and random effects of animal and residual variation were included in the model. Average AFC in Brazil and Colombia were 29.5 ± 4.0 and 32.1 ± 3.5 mo, respectively. Additive and residual genetic components and heritability coefficient for AFC in Brazil were 2.21 mo 2, 9.41 mo 2, and 0.19, respectively, whereas for Colombia, they were 1.02 mo 2, 6.84 mo 2, and 0.13, respectively. The genetic correlation of AFC between Brazil and Colombia was 0.78, indicating differences in ranking of sires consistent with a genotype x environment interaction. Therefore, in countries with differing environments, progeny of Holstein sires may calve at relatively younger or older ages compared with contemporary herdmates in one environment versus another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, data of 1,578 first lactation females, calving from 1985 to 2006 were analysed with the purpose of estimating genetic parameters for milk yield (MY), age at first calving (AFC) and interval between first and second calving (IBFSC) in dairy buffaloes of the Murrah breed in Brazil, Heritability estimates for MY, AFC and IBFSC traits were 0.20, 0.07 and 0.14, respectively. Genetic correlations between MY and AFC and IBFSC were -0.12 and 0.07, respectively, while the corresponding phenotypic correlations were -0.15 and 0.30, respectively. Genetic and phenotypic correlations between AFC and IBFSC were 0.35 and 0.37, respectively. Genetic correlation between MY and AFC showed desirable negative association, suggesting that daughters of the bulls with high breeding values for MY could reach physiological mature at a precocious age. Genetic correlation between MY and IBFSC, showed that the selection for milk production could result in the increase of calving intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black vultures (Coragyps atratus) are often present near calving sites, and under this situation they may play a positive role by removing animal carcasses and afterbirth or a negative role by attacking neonate calves or disturbing cow-calf behaviours following parturition. Cow-calf behaviour was recorded over a 4-year study period from a total of 300 births involving 200 Nellore, 54 Guzerat, 20 Gyr and 26 Caracu cows. The calving site in relation to the location of the herd, considering cow-calf pairs within, close or distant to the herd, the presence of vultures and the behaviour of cows and calves were recorded instantaneously, at 5-min interval. On average, vultures were present at 80% of the calving sites. The frequency of vultures present at calving sites was dependent on the years for the Nellore herd, increasing from 1998 to 2003. When vultures were present, the time that the cow was in contact with its calf decreased, and the percentage of time that the cow was standing still increased. Vultures were observed pecking cows and their neonates during 34.1% of all recordings. However, in only two cases pecking injuries were actually observed on calves that were noted to be very weak. The preliminary results suggest that although black vultures cannot be characterized as a predator of neonate calves, they sometimes attack neonate calves and their presence near the calving sites alter the behaviours of cows and calves. © 2012 The Animal Consortium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most studies on beef cattle longevity, only the cows reaching a given number of calvings by a specific age are considered in the analyses. With the aim of evaluating all cows with productive life in herds, taking into consideration the different forms of management on each farm, it was proposed to measure cow longevity from age at last calving (ALC), that is, the most recent calving registered in the files. The objective was to characterize this trait in order to study the longevity of Nellore cattle, using the Kaplan-Meier estimators and the Cox model. The covariables and class effects considered in the models were age at first calving (AFC), year and season of birth of the cow and farm. The variable studied (ALC) was classified as presenting complete information (uncensored = 1) or incomplete information (censored = 0), using the criterion of the difference between the date of each cow's last calving and the date of the latest calving at each farm. If this difference was >36 months, the cow was considered to have failed. If not, this cow was censored, thus indicating that future calving remained possible for this cow. The records of 11 791 animals from 22 farms within the Nellore Breed Genetic Improvement Program ('Nellore Brazil') were used. In the estimation process using the Kaplan-Meier model, the variable of AFC was classified into three age groups. In individual analyses, the log-rank test and the Wilcoxon test in the Kaplan-Meier model showed that all covariables and class effects had significant effects (P < 0.05) on ALC. In the analysis considering all covariables and class effects, using the Wald test in the Cox model, only the season of birth of the cow was not significant for ALC (P > 0.05). This analysis indicated that each month added to AFC diminished the risk of the cow's failure in the herd by 2%. Nonetheless, this does not imply that animals with younger AFC had less profitability. Cows with greater numbers of calvings were more precocious than those with fewer calvings. Copyright © The Animal Consortium 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major objective of this study was to estimate heritability and genetic correlations between milk yield (MY) and calving interval (CI) and lactation length (LL) in Murrah buffaloes using Bayesian inference. The database used belongs to the genetic improvement program of four buffalo herds from Brazil. To obtain the estimates of variance and covariance, bivariate analyses were performed with the Gibbs sampler, using the program MTGSAM. The heritability coefficient estimates were 0.28, 0.03 and 0.15 for MY, CI and LL, respectively. The genetic correlations between MY and LL was moderate (0.48). However, the genetic correlation between MY and CI showed large HPD regions (highest posterior density interval). Milk yield was the only trait with clear potential for genetic improvement by direct mass selection. The genetic correlation between MY and LL indicates that indirect selection using milk yield is a potentially beneficialstrategy.Theinterpretation of the estimated genetic correlation between MY and CI is difficult and could be spurious. ©2013 Sociedade Brasileira de Zootecnia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of the present study were to determine if variance components of calving intervals varied with age at calving and if considering calving intervals as a longitudinal trait would be a useful approach for fertility analysis of Zebu dairy herds. With these purposes, calving records from females born from 1940 to 2006 in a Guzerat dairy subpopulation in Brazil were analyzed. The fixed effects of contemporary groups, formed by year and farm at birth or at calving, and the regressions of age at calving, equivalent inbreeding coefficient and day of the year on the studied traits were considered in the statistical models. In one approach, calving intervals (Cl) were analyzed as a single trait, by fitting a statistical model on which both animal and permanent environment effects were adjusted for the effect of age at calving by random regression. In a second approach, a four-trait analysis was conducted, including age at first calving (AFC) and three different female categories for the calving intervals: first calving females; young females (less than 80 months old, but not first calving); or mature females (80 months old or more). Finally, a two-trait analysis was performed, also including AFC and Cl, but calving intervals were regarded as a single trait in a repeatability model. Additionally, the ranking of sires was compared among approaches. Calving intervals decreased with age until females were about 80 months old, remaining nearly constant after that age. A quasi-linear increase of 11.5 days on the calving intervals was observed for each 10% increase in the female's equivalent inbreeding coefficient. The heritability of AFC was 0.37. For Cl. the genetic-phenotypic variance ratios ranged from 0.064 to 0.141, depending on the approach and on ages at calving. Differences among genetic variance components for calving intervals were observed along the animal's lifetime. Those differences confirmed the longitudinal aspect of that trait, indicating the importance of such consideration when accessing fertility of Zebu dairy females, especially in situations where the available information relies on their calving intervals. Spearman rank correlations among approaches ranged from 0.90 to 0.95, and changes observed in the ranking of sires suggested that the genetic progress of the population could be affected by the approach chosen for the analysis of calving intervals. (C) 2012 Elsevier ay. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal production, hay production and feeding, winter forage composition changes, and summer pasture yields and nutrient composition of a year-round grazing system for spring-calving and fall-calving cows were compared to those of a conventional, minimal land system. Cows in the year-round and minimal land systems grazed forage from smooth bromegrassorchardgrass-birdsfoot trefoil (SB-O-T) pastures at 1.67 and 3.33 acres, respectively, per cow in the summer. During the summer, SB-O-T pastures in the year-round grazing system also were grazed by stockers at 1.67 stockers per acre, and spring-calving and fall-calving cows grazed smooth bromegrass–red clover (SB-RC) and endophyte-free tall fescue–red clover (TF-RC) at 2.5 acres per cow for approximately 45 days in midsummer. In the year-round grazing system, spring-calving cows grazed corn crop residues at 2.5 acres per cow and stockpiled SB-RC pastures at 2.5 acres per cow; fallcalving cows grazed stockpiled TF-RC pastures at 2.5 acres per cow during winter. In the minimal land system, in winter, cows were maintained in a drylot on first-cutting hay harvested from 62.5–75% of the pasture acres during summer. Hay was fed to maintain a body condition score of 5 on a 9-point scale for springcalving cows in both systems and a body condition score of 3 for fall-calving cows in the year-round system. Over 3 years, mean body weights of fall-calving cows in the year-round system did not differ from the body weights of spring-calving cows in either system, but fall-calving cows had higher (P < .05) body condition scores compared to spring-calving cows in either system. There were no differences among all groups of cows in body condition score changes over the winter grazing season (P > .05). During the summer grazing season, fall-calving cows in the year- round system and springcalving cows in the minimal land system gained more body condition and more weight (P < .05) than springcalving cows in the year-round grazing system. Fall calves in the year-round system had higher birth weights, lower weaning weights, and lower average preweaning daily gains compared to either group of spring calves (P < .05). However, there were no significant differences for birth weights, weaning weights, or average pre-weaning daily gains between spring calves in either system over the 3-year experiment (P > .05). The amount of total growing animal production (calves and stockers) per acre for each system did not differ in any year (P > .05). Over the 3-year experiment, 1.9 ton more hay was fed per cow and 1 ton more hay was fed per cow–calf pair in the minimal land system compared to the year-round grazing system (P < .05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal production, hay production and feeding, and the yields and composition of forage from summer and winter grass-legume pastures and winter corn crop residue fields from a year-round grazing system were compared with those of a conventional system. The year-round grazing system utilized 1.67 acres of smooth bromegrass-orchardgrass-birdsfoot trefoil pasture per cow in the summer, and 1.25 acres of stockpiled tall fescue-red clover pasture per cow, 1.25 acres of stockpiled smooth bromegrass-red clover pasture per cow, and 1.25 acres of corn crop residues per cow during winter for spring- and fall-calving cows and stockers. First-cutting hay was harvested from the tall fescue-red clover and smooth bromegrass-red clover pastures to meet supplemental needs of cows and calves during winter. In the conventional system (called the minimal land system), spring-calving cows grazed smooth bromegrass-orchardgrass-birdsfoot trefoil pastures at 3.33 acres/cow during summer with first cutting hay removed from one-half of these acres. This hay was fed to these cows in a drylot during winter. All summer grazing was done by rotational stocking for both systems, and winter grazing of the corn crop residues and stockpiled forages for pregnant spring-calving cows and lactating fall-calving cows in the year-round system was managed by strip-stocking. Hay was fed to springcalving cows in both systems to maintain a mean body condition score of 5 on a 9-point scale, but was fed to fall-calving cows to maintain a mean body condition score of greater than 3. Over winter, fall-calving cows lost more body weight and condition than spring calving cows, but there were no differences in body weight or condition score change between spring-calving cows in either system. Fall- and spring-calving cows in the yearround grazing system required 934 and 1,395 lb. hay dry matter/cow for maintenance during the winter whereas spring-calving cows in drylot required 4,776 lb. hay dry matter/cow. Rebreeding rates were not affected by management system. Average daily gains of spring-born calves did not differ between systems, but were greater than fall calves. Because of differences in land areas for the two systems, weight production of calves per acre of cows in the minimal land system was greater than those of the year-round grazing system, but when the additional weight gains of the stocker cattle were considered, production of total growing animals did not differ between the two systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A year-round grazing system for spring- and fall-calving cows was developed to compare animal production and performance, hay production and feeding, winter forage composition changes, and summer pasture yield and nutrient composition to that from a conventional, or minimal land system. Systems compared forage from smooth bromegrass-orchardgrass-birdsfoot trefoil pastures for both systems in the summer and corn crop residues and stockpiled grass-legume pastures for the year-round system to drylot hay feeding during winter for the minimal land system. The year-round grazing system utilized 1.67 acres of smooth bromegrassorchardgrass- birdsfoot trefoil (SB-O-T) pasture per cow in the summer, compared with 3.33 acres of (SB-O-T) pasture per cow in the control (minimal land) system. In addition to SB-O-T pastures, the year-round grazing system utilized 2.5 acres of tall fescue-red clover (TFRC) and 2.5 acres of smooth bromegrass-red clover (SBRC) per cow for grazing in both mid-summer and winter for fall- and spring-calving cows, respectively. First-cutting hay was harvested from the TF-RC and SB-RC pastures, and regrowth was grazed for approximately 45 days in the summer. These pastures were then fertilized with 40 lbs N/acre and stockpiled for winter grazing. Also utilized during the winter for spring-calving cows in the year-round grazing system were corn crop residue (CCR) pastures at an allowance of 2.5 acres per cow. In the minimal land system, hay was harvested from three-fourths of the area in SB-O-T pastures and stored for feeding in a drylot through the winter. Summer grazing was managed with rotational stocking for both systems, and winter grazing of stockpiled forages and corn crop residues by year-round system cows was managed by strip-stocking. Hay was fed to maintain a body condition score of 5 on a 9 point scale for spring-calving cows in both systems. Hay was supplemented as needed to maintain a body condition score of 3 for fall-calving cows nursing calves through the winter. Although initial condition scores for cows in both systems were different at the initiation of grazing for both winter and summer, there were no significant differences (P > .05) in overall condition score changes throughout both grazing seasons. In year 1, fall-calving cows in the year-round grazing system lost more (P < .05) body weight during winter than spring-calving cows in either system. In year 2, there were no differences seen in weight changes over winter for any group of cows. Average daily gains of fall calves in the yearround system were 1.9 lbs/day compared with weight gains of 2.5 lbs/day for spring calves from both systems. Yearly growing animal production from pastures for both years did not differ between systems when weight gains of stockers that grazed summer pastures in the year-round grazing system were added to weight gains of suckling calves. Carcass characteristics for all calves finished in the feedlot for both systems were similar. There were no significant differences in hay production between systems for year 1; however, amounts of hay needed to maintain cows were 923, 1373, 4732 lbs dry matter/cow for year-round fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively. In year 2, hay production per acre in the minimal land system was greater (P < .05) than for the year-round system, but the amounts of hay required per cow were 0, 0, and 4720 lbs dry matter/cow for yearround fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large calving events at Greenland's largest outlet glaciers are associated with glacial earthquakes and near instantaneous increases in glacier flow speed. At some glaciers and ice streams, flow is also modulated in a regular way by ocean tidal forcing at the terminus. At Helheim Glacier, analysis of geodetic data shows decimeter-level periodic position variations in response to tidal forcing. However, we also observe transient increases of more than 100% in the glacier's responsiveness to such tidal forcing following glacial-earthquake calving events. The timing and amplitude of the changes correlate strongly with the step-like increases in glacier speed and longitudinal strain rate associated with glacial earthquakes. The enhanced response to the ocean tides may be explained by a temporary disruption of the subglacial drainage system and a concomitant reduction of the friction at the ice-bedrock interface, and suggests a new means by which geodetic data may be used to infer glacier properties. Citation: de Juan, J., et al. (2010), Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier, Geophys. Res. Lett., 37, L12501, doi: 10.1029/2010GL043289.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calving has been studied for glaciers ranging from slow polar glaciers that calve on dry land, such as on Deception Island (63.0-degrees-S, 60.6-degrees-W) in Antarctica, through temperate Alaskan tide-water glaciers, to fast outlet glaciers that float in fiords and calve in deep water, such as Jakobshavns Isbrae (69.2-degrees-N, 49.9-degrees-W) in Greenland. Calving from grounded ice walls and floating ice shelves is the main ablation mechanism for the Antarctic and Greenland ice sheets, as it was along marine and lacustrine margins of former Pleistocene ice sheets, and is for tide-water and polar glaciers. Yet, the theory of ice calving is underdeveloped because of inherent dangers in obtaining field data to test and constrain calving models. An attempt is made to develop a calving theory for ice walls grounded in water of variable depth, and to relate slab calving from ice walls to tabular calving from ice shelves. A calving law is derived in which calving rates from ice walls are controled by bending creep behind the ice wall, and depend on wall height h, forward bending angle-theta, crevasse distance c behind the ice wall and depth d of water in front of the ice wall. Reasonable agreement with calving rates reported by Brown and others (1982) for Alaskan tide-water glaciers is obtained when c depends on wall height, wall height above water and water depth. More data are needed to determine which of these dependencies is correct. A calving ratio c/h is introduced to understand the transition from slab calving to tabular calving as water deepens and the calving glacier becomes afloat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step-like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving-front behavior at Greenland's largest outlet glaciers, on timescales as short as minutes to hours, and clarify the mechanism by which glacial earthquakes occur. Citation: Nettles, M., et al. (2008), Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland, Geophys. Res. Lett., 35, L24503, doi: 10.1029/2008GL036127.