109 resultados para bubbling
Resumo:
The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase, according to the literature. FLUENT 6.2 has been used as the modelling framework of the simulations with a completely revised drag model, in the form of user defined function (UDF), to calculate the forces exerted on the particle as well as its velocity components. 2-D and 3-D simulations are tested and compared. The study is the first part of a complete pyrolysis model in fluidised bed reactors.
A CFD approach on the effect of particle size on char entrainment in bubbling fluidised bed reactors
Resumo:
The fluid – particle interaction inside a 41.7 mg s-1 fluidised bed reactor is modelled. Three char particles of sizes 500 µm, 250 µm, and 100 µm are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions and reactor design the char particles will either be entrained from the reactor or remain inside the bubbling bed. The particle size is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. A 3-Dimensional simulation has been performed with a completele revised momentum transport model for bubble three-phase flow according to the literature as an extension to the commercial finite volume code FLUENT 6.2.
Resumo:
Experiments on drying of moist particles by ambient air were carried out to measure the mass transfer coefficient in a bubbling fluidized bed. Fine glass beads of mean diameter 125?µm were used as the bed material. Throughout the drying process, the dynamic material distribution was recorded by electrical capacitance tomography (ECT) and the exit air condition was recorded by a temperature/humidity probe. The ECT data were used to obtain qualitative and quantitative information on the bubble characteristics. The exit air moisture content was used to determine the water content in the bed. The measured overall mass transfer coefficient was in the range of 0.0145–0.021?m/s. A simple model based on the available correlations for bubble-cloud and cloud-dense interchange (two-region model) was used to predict the overall mass transfer coefficient. Comparison between the measured and predicted mass transfer coefficient have shown reasonable agreement. The results were also used to determine the relative importance of the two transfer regions.
Resumo:
This paper analyzes the physical phenomena that take place inside an 1 kg/h bubbling fluidized bed reactor located at Aston University and presents a geometrically modified version of it, in order to improve certain hydrodynamic and gas flow characteristics. The bed uses, in its current operation, 40 L/min of N2 at 520 °C fed through a distributor plate and 15 L/min purge gas stream, i.e., N2 at 20 °C, via the feeding tube. The Eulerian model of FLUENT 6.3 is used for the simulation of the bed hydrodynamics, while the k - ε model accounts for the effect of the turbulence field of one phase on the other. The three-dimensional simulation of the current operation of the reactor showed that a stationary bubble was formed next to the feeding tube. The size of the permanent bubble reaches up to the splash zone of the reactor, without any fluidizaton taking place underneath the feeder. The gas flow dynamics in the freeboard of the reactor is also analyzed. A modified version of the reactor is presented, simulated, and analyzed, together with a discussion on the impact of the flow dynamics on the fast pyrolysis of biomass. © 2010 American Chemical Society.
Resumo:
A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.
Resumo:
O uso de lipídios obtidos a partir da biomassa de microalgas tem sido descrito como uma alternativa promissora para a indústria petro-diesel e envolve etapas como o cultivo de microalgas, separação da biomassa e extração de lipídios. Para viabilizar a produção em larga escala, é necessário selecionar as espécies mais produtivas, diminuir os custos de produção e determinar as condições ideais de cultivo. Os gêneros Chlorella, Desmodesmus e Ankistrodesmus apresentam características favoráveis à produção comercial, tendo sido então selecionada uma espécie de cada no presente trabalho. O objetivo do estudo foi avaliar diferentes condições de cultivo de Ankistrodesmus fusiformis, Chlorella vulgaris e Desmodesmus spinosus visando o aumento da produtividade em biomassa e lipídios totais. As algas foram identificadas e cultivadas em laboratório, em condições controladas de temperatura a 26ºC (±1), aeração por borbulhamento à pressão ambiente e luminosidade fornecida por lâmpadas fluorescentes, com intensidade de 47,25 μmol de fótons m-2.s-1 (3500 lux), fotoperiodo de 12h e pH 7, sob duas concentrações estressantes de nitrato de sódio (0,10 g/L e 0,05g/L). Os cultivos duraram em média 16 dias, sendo as curvas de crescimento construídas com dados de espectrofotometria óptica coletados a cada 48h, e a biomassa obtida ao final do cultivo por centrifugação e liofilização de cada unidade experimental. Para extração dos lipídios totais, foi utilizada a mistura de clorofórmio: metanol (1:2), segundo a metodologia de Bligh & Dyer (1959). Os tratamentos de estresse em D.spinosus resultaram em maior acúmulo lipídico, com aumento de até 149,7%, porém com drástica diminuição do crescimento e biomassa. Em C. vulgaris, nos tratamentos de estresse, verificou-se apenas ligeiro aumento do peso seco e teor de lipídios, não havendo diferença significativa entre os tratamentos e o controle. Da mesma forma, A.fusiformis não mostrou respostas significativas ao estresse pela redução de nitrato de sódio do meio, havendo ligeira diminuição do conteúdo lipídico e aumento do crescimento e biomassa. Com respostas diferentes para cada espécie estudada, evidencia-se a necessidade do conhecimento da fisiologia e autoecologia da cepa a ser cultivada em escala comercial visando à produção de ácidos graxos para fins de biodiesel.
Resumo:
Na actualidade, quando se procura a diversificação energética, em especial de fontes renováveis, a gasificação surge como uma forma promissora de aproveitamento da biomassa, nomeadamente dos resíduos florestais, para a geração de energia eléctrica. Neste contexto, passou-se em revista as diversas formas de gasificação, a sua evolução histórica e os diversos tipos de reactores com as suas vantagens e desvantagens. De igual forma, foram analisadas as disponibilidades e características da biomassa no mundo e em Portugal, destacando-se as suas potencialidades e as dificuldades no seu aproveitamento. Fez-se o dimensionamento de um reactor-gasificador de leito fluidizado borbulhante à escala piloto, bem como dos equipamentos complementares, sistema de alimentação, ventilador, ciclone, filtro para o gás produzido e gerador eléctrico. As dimensões dum reactor para trabalhos laboratoriais foram determinadas por cálculo das condições hidrodinâmicas, que, também, permitiram calcular o caudal de ar a utilizar. Por balanços materiais, considerando-se uma composição experimental do gás de síntese citada na literatura, determinou-se uma possível composição da alimentação e um caudal de alimentação.
Resumo:
A mathematical model is proposed for the evolution of temperature, chemical composition, and energy release in bubbles, clouds, and emulsion phase during combustion of gaseous premixtures of air and propane in a bubbling fluidized bed. The analysis begins as the bubbles are formed at the orifices of the distributor, until they explode inside the bed or emerge at the free surface of the bed. The model also considers the freeboard region of the fluidized bed until the propane is thoroughly burned. It is essentially built upon the quasi-global mechanism of Hautman et al. (1981) and the mass and heat transfer equations from the two-phase model of Davidson and Harrison (1963). The focus is not on a new modeling approach, but on combining the classical models of the kinetics and other diffusional aspects to obtain a better insight into the events occurring inside a fluidized bed reactor. Experimental data are obtained to validate the model by testing the combustion of commercial propane, in a laboratory-scale fluidized bed, using four sand particle sizes: 400–500, 315–400, 250–315, and 200–250 µm. The mole fractions of CO2, CO, and O2 in the flue gases and the temperature of the fluidized bed are measured and compared with the numerical results.
Resumo:
Copper iron (Cu-Fe) 3D porous foams for supercapacitor electrodes were electrodeposited in the cathodic regime, on stainless steel current collectors, using hydrogen bubbling dynamic template. The foams were prepared at different current densities and deposition times. The foams were submitted to thermal conditioning at temperatures of 150 and 250 degrees C. The morphology, composition and structure of the formed films were studied by SEM, EDS and XRD, respectively. The electrochemical behaviour was studied by cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. The morphology of the 3D Cu-Fe foams is sensitive to the electrodeposition current and time. The increase of the current density produces a denser, larger and more ramified dendritic structure. Thermal conditioning at high temperature induces a coarser grain structure and the formation of copper oxides, which affect the electrochemical behaviour. The electrochemical response reveals the presence of various redox peaks assigned to the oxidation and reduction of Cu and Fe oxides and hydroxides in the foams. The specific capacitance of the 3D Cu Fe foams was significantly enhanced by thermal conditioning at 150 degrees C. The highest specific capacitance values attained 297 Fg(-1) which are much above the ones typically observed for single Cu or Fe Oxides and hydroxides. These values highlight a synergistic behaviour resulting from the combination of Cu and Fe in the form of nanostructured metallic foams. Moreover, the capacitance retention observed in an 8000 charge/discharge cycling test was above 66%, stating the good performance of these materials and its enhanced electrochemical response as supercapacitor negative electrodes. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Diplomityö tehtiin Anjalankoskella sijaitsevalle Vattenfallin tytäryhtiölle, Vamy Oy:lle. Vamy toimittaa Myllykoski Paper Oy:lle prosessilämpöä ja sähköä. Vuotuinen energiantuotanto on noin 700- 900 GWh prosessilämpöä ja 150- 190 GWh sähköä paperin tuotantomäärästä riippuen. Diplomityön tavoitteena oli parantaa voimalaitoksen kiinteän polttoaineen näytteenottojärjestelmää ja sitä kautta parantaa biokattilan hyötysudetta. Voimalaitoksen biokattila on leijupetikattila, jossa poltetaan tehtaalta tulevaa kuorta ja lietettä sekä tehtaan ulkopuolisia puuperäisiä biopolttoaineita ja turvetta. Työn aikana tehtyjen selvitysten perusteella voimalaitokselle hankittiin polttoainetietojärjestelmä. Lisäksi näytteenotto- ja näytteiden käsittelyohjeet päivitettiin energiaturpeen laatuohjeen 2006 ja kiinteiden biopolttoaineiden CEN teknisten spesifikaatioiden mukaiseksi.
Resumo:
Environmentally harmful consequences of fossil fuel utilisation andthe landfilling of wastes have increased the interest among the energy producers to consider the use of alternative fuels like wood fuels and Refuse-Derived Fuels, RDFs. The fluidised bed technology that allows the flexible use of a variety of different fuels is commonly used at small- and medium-sized power plants ofmunicipalities and industry in Finland. Since there is only one mass-burn plantcurrently in operation in the country and no intention to build new ones, the co-firing of pre-processed wastes in fluidised bed boilers has become the most generally applied waste-to-energy concept in Finland. The recently validated EU Directive on Incineration of Wastes aims to mitigate environmentally harmful pollutants of waste incineration and co-incineration of wastes with conventional fuels. Apart from gaseous flue gas pollutants and dust, the emissions of toxic tracemetals are limited. The implementation of the Directive's restrictions in the Finnish legislation is assumed to limit the co-firing of waste fuels, due to the insufficient reduction of the regulated air pollutants in the existing flue gas cleaning devices. Trace metals emission formation and reduction in the ESP, the condensing wet scrubber, the fabric filter, and the humidification reactor were studied, experimentally, in full- and pilot-scale combustors utilising the bubbling fluidised bed technology, and, theoretically, by means of reactor model calculations. The core of the model is a thermodynamic equilibrium analysis. The experiments were carried out with wood chips, sawdust, and peat, and their refuse-derived fuel, RDF, blends. In all, ten different fuels or fuel blends were tested. Relatively high concentrations of trace metals in RDFs compared to the concentrations of these metals in wood fuels increased the trace metal concentrations in the flue gas after the boiler ten- to hundred-folds, when RDF was co-fired with sawdust in a full-scale BFB boiler. In the case of peat, lesser increase in trace metal concentrations was observed, due to the higher initial trace metal concentrations of peat compared to sawdust. Despite the high removal rate of most of the trace metals in the ESP, the Directive emission limits for trace metals were exceeded in each of the RDF co-firing tests. The dominat trace metals in fluegas after the ESP were Cu, Pb and Mn. In the condensing wet scrubber, the flue gas trace metal emissions were reduced below the Directive emission limits, whenRDF pellet was used as a co-firing fuel together with sawdust and peat. High chlorine content of the RDFs enhanced the mercuric chloride formation and hence the mercury removal in the ESP and scrubber. Mercury emissions were lower than theDirective emission limit for total Hg, 0.05 mg/Nm3, in all full-scale co-firingtests already in the flue gas after the ESP. The pilot-scale experiments with aBFB combustor equipped with a fabric filter revealed that the fabric filter alone is able to reduce the trace metal concentrations, including mercury, in the flue gas during the RDF co-firing approximately to the same level as they are during the wood chip firing. Lower trace metal emissions than the Directive limits were easily reached even with a 40% thermal share of RDF co-firing with sawdust.Enrichment of trace metals in the submicron fly ash particle fraction because of RDF co-firing was not observed in the test runs where sawdust was used as the main fuel. The combustion of RDF pellets with peat caused an enrichment of As, Cd, Co, Pb, Sb, and V in the submicron particle mode. Accumulation and release oftrace metals in the bed material was examined by means of a bed material analysis, mass balance calculations and a reactor model. Lead, zinc and copper were found to have a tendency to be accumulated in the bed material but also to have a tendency to be released from the bed material into the combustion gases, if the combustion conditions were changed. The concentration of the trace metal in the combustion gases of the bubbling fluidised bed boiler was found to be a summary of trace metal fluxes from three main sources. They were (1) the trace metal flux from the burning fuel particle (2) the trace metal flux from the ash in the bed, and (3) the trace metal flux from the active alkali metal layer on the sand (and ash) particles in the bed. The amount of chlorine in the system, the combustion temperature, the fuel ash composition and the saturation state of the bed material in regard to trace metals were discovered to be key factors affecting therelease process. During the co-firing of waste fuels with variable amounts of e.g. ash and chlorine, it is extremely important to consider the possible ongoingaccumulation and/or release of the trace metals in the bed, when determining the flue gas trace metal emissions. If the state of the combustion process in regard to trace metals accumulation and/or release in the bed material is not known,it may happen that emissions from the bed material rather than the combustion of the fuel in question are measured and reported.
Resumo:
The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.
Resumo:
In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. Anew, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosionwear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling andcirculating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can beused to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an inline tube bank with six tube rows, and a staggered tube bank with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss, diameter loss and wall thickness loss measurements of the test sleeves were taken. Erosion wear as a function of flow conditions, tube material and tube construction was analyzed by single-variable linear regression analysis. In developing the erosion wear calculation equations, multi-variable linear regression analysis was used. In the staggered tube bank, erosion wear had a maximum value in a tube row 2 and a local maximum in row 5. In rows 3, 4 and 6, the erosion rate was low. On the other hand, in the in-line tube bank the minimum erosion rate occurred in tube row 2 and in further rows the erosion had an increasing value, so that in a six row tube bank, the maximum value occurred in row 6.
Resumo:
Työn tavoitteena oli rakentaa dynaaminen malli kuplaleijupetikattilasta APROS- ohjelmistoa käyttäen. Tarkoituksena oli selvittää kyseisen ohjelmiston soveltuvuutta nykyaikaisen voimalaitoskattilan mallintamiseen. Mallin rakentamisen perustana oli toiminnassa oleva kuplaleijupetillä varustettu voimalaitoskattila. Näin oli käytettävissä riittävä määrä aineistoa mallin rakenteen luomiseen ja valmiin mallin sovittamiseen. Työ on luonteeltaan kaksiosainen. Ensimmäinen osa on kirjallisuusosa, jossa esitellään mallinnuksen kohteena olevaa tekniikkaa. Tekniikasta annetaan kuva esittelemällä perusteoria ja käytännön sovellukset. Lisäksi esitellään kattilassa käytettävät polttoaineet. Kirjallisuusosassa esitellään myös käytettävä APROS-mallinnusohjelmisto. Ohjelmiston laskennan perusteita ei erikseen esitellä. Ne pohjautuvat yleiseen termodynamiikan ja lämmönsiirron teoriaan. Ohjelmiston käytöstä ja sen toiminnasta yleensä annetaan yleisluontoinen selostus. Toisessa osassa mallin rakentaminen esitellään vaiheittain ja siinä järjestyksessä kuin se mallia rakennettaessa tehtiin. Kattilamallin toimintaa testattiin vertaamalla kattilan mitoitustilaan viritettyä mallia takuukokeiden mittaustuloksiin. Lisäksi testattiin mallin toimintaa osakuormalla koeajojakson soveltuvasta osakuormatilasta saatuihin mittausarvoihin. Mallin jatkokehitys pitää sisällään laajamittaisen automaation luomisen ja erilaisten muutostilojen testaamista mallilla.