674 resultados para brejui epidote


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of marble from Chillagoe, North Queensland have been analyzed using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. Chemical analyses provide evidence for the presence of minerals other than limestone and calcite in the marble, including silicate minerals. Some of these analyses correspond to silicate minerals. The Raman spectra of these crystals were obtained and the Raman spectrum corresponds to that of allanite from the Arizona State University data base (RRUFF) data base. The combination of SEM with EDS and Raman spectroscopy enables the characterization of the mineral allanite in the Chillagoe marble.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first finding of low-temperature eclogites from the Indochina region is reported. The eclogites occur along the Song Ma Suture zone in northern Vietnam, which is widely regarded as the boundary between the South China and Indochina cratons. The major lithology of the area is pelitic schist that contains garnet and phengite with or without biotite, chloritoid, staurolite and kyanite, and which encloses blocks and lenses of eclogite and amphibolite. The eclogites commonly consist of garnet, omphacite, phengite, rutile, quartz and/or epidote with secondary barroisite. Omphacite is commonly surrounded by a symplectite of Na-poor omphacite and Na-rich plagioclase. In highly retrograded domains, diopside + tremolite + plagioclase symplectites replace the primary phases. Estimated peak-pressure metamorphic conditions based on isochemical phase diagrams for the eclogites are 2.1-2.2 GPa and 600-620 degrees C, even though thermobarometric results yield higher pressure and temperature conditions (2.6-2.8 GPa and 620-680 degrees C). The eclogites underwent a clockwise P-T trajectory with a post-peak-pressure increase of temperature to a maximum of > 750 degrees C at 1.7 GPa and a subsequent cooling during decompression to 650 degrees C and 1.3 GPa, which was followed by additional cooling before close-to-isothermal decompression to similar to 530 degrees C at 0.5 GPa. The surrounding pelitic schist (garnet-chloritoid-phengite) records similar metamorphic conditions (580-600 degrees C at 1.9-2.3 GPa) and a monazite chemical age of 243 +/- 4 Ma. A few monazite inclusions within garnet and the cores of some zoned monazite in garnet-phengite schist record an older thermal event (424 +/- 15 Ma). The present results indicate that the Indochina craton was deeply (> 70 km) subducted beneath the South China craton in the Triassic. The Silurian cores of monazite grains may relate to an older non-collisional event in the Indochina craton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The four papers summarized in this thesis deal with the Archean and earliest Paleoproterozoic granitoid suites observed in the Suomussalmi district, eastern Finland. Geologically, the area belongs to the Kianta Complex of the Western Karelian Terrane in the Karelian Province of the Fennoscandian shield. The inherited zircons up to 3440 Ma old together with Sm Nd and Pb Pb data confirm the existence of previously anticipated Paleoarchean protocrust in Suomussalmi. The general timeline of granitoid magmatism is similar to that of the surrounding areas. TTG magmatism occurred in three distinct phases: ca 2.95 Ga, 2.83 2.78 Ga and 2.76 2.74 Ga. In Suomussalmi the TTGs sensu stricto (K2O/Na2O less than 0.5) belong to the low-HREE type and are interpreted as partial melts of garnet amphibolites, which did not significantly interact with mantle peridotites. Transitional TTGs (K2O/Na2O more than 0.5), present in Suomussalmi and absent from surrounding areas, display higher LILE concentrations, but otherwise closely resemble the TTGs sensu stricto and indicate that recycling of felsic crust commenced in Suomussalmi 200 Ma earlier than in surrounding areas. The youngest TTG phase was coeval with the intrusion of the Likamännikkö quartz alkali feldspar syenite (2741 ± 2 Ma) complex. The complex contains angular fragments of ultrabasic rock, which display considerable compositional heterogeneity and are interpreted as cumulates containing clinopyroxene (generally altered to actinolite), apatite, allanite, epidote, and albite. The quartz alkali feldspar syenite cannot be regarded as alkaline sensu stricto, despite clear alkaline affinities. Within Likamännikkö there are also calcite carbonatite patches, which display mantle-like O- and C-isotope values, as well as trace element characteristics consistent with a magmatic origin, and could thus be among the oldest known carbonatites in the world. Sanukitoid (2.73 2.71 Ga) and quartz diorite suites (2.70 Ga) overlap within error margins and display compositional similarities, but can be differentiated from each other on the basis of higher Ba, K2O and LREE contents of the sanukitoids. The Likamännikkö complex, sanukitoids and quartz diorites are interpreted as originating from the metasomatized mantle and mark the diversification of the granitoid clan after 200 Ma of evolution dominated by the TTG suite. Widespread migmatization and the intrusion of anatectic leucogranitoids as dykes and intrusions of varying size took place at 2.70 2.69 Ga, following collisional thickening of the crust. The leucogranitoids and leucosomes of migmatized TTGs are compositionally alike and characterized by high silica contents and a leucocratic appearance. Due to compositional overlap, definitive discrimination between leucogranitoids and transitional TTGs requires isotope datings and/or knowledge of field relationships. Leucogranitoids represent partial melts of the local TTGs, both the sensu stricto and transitional types, mostly derived under water fluxed conditions, with possible fluid sources being late sanukitoids and quartz diorites as well as dehydrating lower crust. The Paleoproterozoic 2.44 2.39 Ga A-type granitoids of the Kianta Complex emplaced in an extensional environment are linked to the coeval and more widespread mafic intrusions and dykes observed over most of the Archean nucleus of the Fennoscandian shield. The A-type intrusions in the Suomussalmi area are interpreted as partial melts of the Archean lower crust and display differences in composition and magnetite content, which indicate differences in the composition and oxidation state of the source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water-rock reactions are driven by the influx of water, which are out of equilibrium with the mineral assemblage in the rock. Here a mass balance approach is adopted to quantify these reactions. Based on field experiments carried out in a granito-gneissic small experimental watershed (SEW), Mule Hole SEW (similar to 4.5 km(2)), quartz, oligoclase, sericite, epidote and chlorite are identified as the basic primary minerals while kaolinite, goethite and smectite are identified as the secondary minerals. Observed groundwater chemistry is used to determine the weathering rates, in terms of `Mass Transfer Coefficients' (MTCs), of both primary and secondary minerals. Weathering rates for primary and secondary minerals are quantified in two steps. In the first step, top red soil is analyzed considering precipitation chemistry as initial phase and water chemistry of seepage flow as final phase. In the second step, minerals present in the saprolite layer are analyzed considering groundwater chemistry as the output phase. Weathering rates thus obtained are converted into weathering fluxes (Q(weathering)) using the recharge quantity. Spatial variability in the mineralogy observed among the thirteen wells of Mule Hole SEW is observed to be reflected in the MTC results and thus in the weathering fluxes. Weathering rates of the minerals in this silicate system varied from few 10 mu mol/L (in case of biotite) to 1000 s of micromoles per liter (calcite). Similarly, fluxes of biotite are observed to be least (7 +/- 5 mol/ha/yr) while those of calcite are highest (1265 791 mol/ha/yr). Further, the fluxes determined annually for all the minerals are observed to be within the bandwidth of the standard deviation of these fluxes. Variations in these annual fluxes are indicating the variations in the precipitation. Hence, the standard deviation indicated the temporal variations in the fluxes, which might be due to the variations in the annual rainfall. Thus, the methodology adopted defines an inverse way of determining weathering fluxes, which mainly contribute to the groundwater concentration. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A área estudada está inserida na Faixa Ribeira, Segmento Central da Província Mantiqueira (Almeida et al., 1973, 1977, 1981), que representa um cinturão de dobramentos e empurrões gerado no Neo-proterozóico/Cambriano, durante a Orogênese Brasiliana, na borda sul/sudeste do Cráton do São Francisco (Almeida, 1971, 1977; Cordani et al., 1967, 1973; Cordani & Brito Neves, 1982; Teixeira & Figueiredo, 1991). Neste contexto, o Complexo Quirino é o embasamento retrabalhado do Terreno Paraíba do Sul (Heilbron et al., 2004). O Complexo Quirino é formado por extensos corpos de ortognaisses foliados a homogêneos, leuco a mesocráticos, de granulometria média à grossa, composicionalmente variando entre granitóides tonalíticos/granodioríticos a graníticos, e apresentando enclaves de rochas ultramáficas, máficas e cálcio-silicáticas (ricas em tremolita). Os ortognaisses tonalíticos/granodioríticos apresentam porfiroblastos de plagioclásio e a hornblenda como máfico principal, contrastando com os de composição granítica que apresentam porfiroblastos de K-feldspato e biotita predominante. Como acessórios aparecem zircão, titanita, apatita e epidoto. Também estão associados a estes ortognaisses, granitóides neoproterozóicos que formam corpos individualizados ou lentes anatéticas no conjunto paleoproterozóico. Estes são compostos predominantemente por biotita gnaisse e hornblenda-biotita gnaisse. A análise litogeoquímicas dos ortognaisses do Complexo Quirino demonstrou a existência de duas séries magmáticas distintas. A primeira pertencente à série cálcio-alcalina de alto-K apresenta uma composição mais expandida granítica-adamelítica/granodioritica/tonalítica e é correlacionável aos bt-ortognaisses e alguns hb-bt-ortognaisses. Os ortognaisses da série médio-K apresentam composição predominantemente tonalítica, sendo correlacionáveis à maioria dos hornblenda-biotita gnaisses. Enclaves lenticulares de metapiroxeníticos e anfibolíticos ocorrem em muitos afloramentos. Também ocorrem granitóides neoproterozóicos de composição graníticas a quartzo-monzoníticas O estudo isotópico de Sm-Nd e Sr demonstrou que os ortognaisses da série cálcio-alcalina de alto-K e aqueles da série cálcio-alcalina de médio-K possuem idades modelo TDM variando entre paleoproterozóicas a arqueanas, consistentes com dados U-Pb em zircão publicados na literatura. A série cálcio-alcalina de alto-K é mais antiga (2308 9,2 Ma a 2185 8 Ma) do que a série calcio-alcalina de médio-K (2169 3 a 2136 14 Ma) e a existência de zircões herdados com idades mínimas de 2846 Ma e 2981 Ma para série de médio-K e 3388 16 para série de alto-K. Os granitóides brasilianos possuem idades de cristalização neoproterozóica correlacionada a Orogênese Brasiliana (602 a 627 Ma) (Viana, 2008; Valladares et al., 2002)./Com base nos dados de Sr e Sm-Nd foi possível caracterizar 4 grupos distintos. Os grupos 1 e 2 são formados por rochas de idade paleoproterozóica (2,1 a 2,3 Ga) com idades modelo TDM variando de 2,9 e 3,4 Ga, εNd entre -8,1 e -5,8 e 87Sr/86Sr(t) = 0,694707 (Grupo 1) e TDM variando de 2,5 a 2,7 Ga, εNd entre -5,8 e -3,1 e 87Sr/86Sr(t) = 0,680824 (Grupo 2), formados no paleoproterozóico com contribuição de uma crosta arqueana. O grupo 3 é formado por rochas juvenis de idade paleoproterozóica, com idades de cristalização variando entre 2,0 e 2,2 Ga e com idades modelo TDM variando de 2,1 a 2,2 Ga e εNd entre + 1,5 e + 1,2. O grupo 4 é formado durante o neoproterozóico (645 Ma) por rochas possivelmente de idade paleoproterozóico com idades modelo TDM igual a 1,7 Ga e εNd igual a -8,3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variolitic andesite from the Susong County in the Dabie Mountains implies that it was erupted in water. The mineralogy of the varioles is primarily radiate plagioclase (albite sind oligoclase), with little pyroxene, hornblende and quartz (derived from alteration). The pyroxene, hornblende and quartz are in the interstices between plagiocalse. The matrix consists of glass, hornblende, chlorite, epidote and zoisite. It is clearly subjected an extensive alteration. The andesite has an uncommon chemical composition. The SiO2 content is about 56.8%, TiO2 = 0.9%, MgO = 6.4%, Fe2O3 (tot) = 6.7%similar to 7.6%, 100Mg/(Mg + Fe) = 64.1 similar to 66.2. Mg-# is significantly high. The andesite has high abundances of large-lithophile trace elements (e.g. K, Ba. Sr, LREE), e.g. La/Nb = 5.56 similar to 6.07, low abundances of high-strength-field elements (HFSE e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subduction-related magmas. In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a character of the continental margins. There has a strong punishment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)(N) is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)(N) = 28.63 similar to 36.74, (La/Y)(N) = 70.33 similar to 82.4. The elements Y and Yb are depleted greatly, Y<20 g/g, Y-N = 2.74 similar to 2.84, Yb-N = 2.18 similar to 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is - 18.7 similar to -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the variolitic basaltic andesite was resulted from the mantle wedge of North China block, which had the Nd model age of 2.5Ga, when the Yangze block which had the Nd model age of 1.7Ga subducted beneath it. So the variolitic andesite has characteristics of the island-are volconic rocks oil a continental basement in the vicinity of the destructive continental margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The West Shandong Uplift and its adjacent basins, with same evolutional history before Mesozoic, are an important basin-orogenic systems in North China. After late Mesozoic, tectonic differentiation between basin and orogenic belt gradually displayed in the study area. The Boxing sag is a part of Jiyang Depression near to West Shandong Uplift, in which the whole Mesozoic and Cenozoic strata are preserved. Based on the analysis of sedimentary records in the Boxing sag, the Cenozoic structural and sedimentary evolutions in Boxing Sag and its response to Western Shandong uplift are discussed in this dissertation. The main conclusions in this research are presented as follows. Based on Seismic and well logging profile interpretation, fault growth index, thickness difference between bottom wall and top wall and fault activity rate from Eocene to Pliocene are studied. Boxing sag had three main faults, NE, NW and NEE trending faults. Research shows that the activity of the NW trending fault in the Boxing sag became weaken from E1-2S4 to N2m gradually. The evolution of NE and the NEE trending fault can be divided into three episodes, from E1-2k to E2s4, from E2s3 to E3s1, from N2m to E3d. The analysis of Paleogene samples of heavy mineral assemblages shows that metamorphic rocks represented by garnet, intermediate-acid igneous rocks represented by the assemblage of apatite, zircon and tourmaline became less from E1-2k to N2g, and sedimentary rocks represented by the assemblage of pyrite, barite and limonite also became less. Intermediate-basic igneous rocks represented by the assemblage of leucoxene, rutile and ilmenite and metamorphic rocks represented by epidote became more and more. Electronic microprobe analysis shows that glaucophane and barroisite are existed in Kongdian Formation and the 4th member of Shahejie Formation, and they demonstrate that Western Shandong and Eastern Shandong are all the source regions of the Boxing Sag, and they also indicate that oceanic crust existed before the collision between the Yangtze and North China continent. The fact that Eastern Shandong is the source region of Boxing Sag also indicates that Western Shandong was not high enough to prevent sediment from Eastern Shandong at E1-2k and E2s4. The results of the dating of five detrital zircons of Boxing Sag show Kongdian Formation and the 4th member of Shahejie Formation have the age peaks of 2800Ma and 700-800. It means that Eastern Shandong is the source region of Boxing Sag at early Paleogene and Western Shandong is not high enough to prevent the sediment from Eastern Shandong. The ages of 160-180 and 220-260 Ma, which exist in the Guantao Formation and Paleogene, are common in Eastern Shandong and rare in Western Shandong,and it implied that Western Shandong is a low uplift at 24Ma. The Paleogene strata have almost same age groups, while the Guantao Formation has significant variations of age groups, and this indicates that Boxing Sag and Western Shandong uplift had taken place tremendous changes. The results of apatite fission track in Boxing sag show that three times uplifts happened at the source region at 60 Ma, 45Ma and 15Ma respectively, and the Boxing sag experienced two subsidences at 60Ma, 45Ma and one uplift at 20Ma.