939 resultados para brain tissue


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Segmentation of medical imagery is a challenging problem due to the complexity of the images, as well as to the absence of models of the anatomy that fully capture the possible deformations in each structure. Brain tissue is a particularly complex structure, and its segmentation is an important step for studies in temporal change detection of morphology, as well as for 3D visualization in surgical planning. In this paper, we present a method for segmentation of brain tissue from magnetic resonance images that is a combination of three existing techniques from the Computer Vision literature: EM segmentation, binary morphology, and active contour models. Each of these techniques has been customized for the problem of brain tissue segmentation in a way that the resultant method is more robust than its components. Finally, we present the results of a parallel implementation of this method on IBM's supercomputer Power Visualization System for a database of 20 brain scans each with 256x256x124 voxels and validate those against segmentations generated by neuroanatomy experts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in modulation of gene expression, although it remains possible that this protein can influence mRNA expression under pathogenic cicumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of Rocky Mountain elk in North America. Recent studies suggest that tissue and blood mineral levels may be valuable in assessing TSE infection in sheep and cattle. The objectives of this study were to examine baseline levels of copper, manganese, magnesium, zinc, selenium, and molybdenum in the brains of Rocky Mountain elk with differing prion genotypes and to assess the association of mineral levels with CWD infection. Elk with leucine at prion position 132 had significantly lower magnesium levels than elk with 2 copies of methionine. Chronic wasting disease-positive elk had significantly lower magnesium than control elk. The incorporation of manganese levels in addition to magnesium significantly refined explanatory ability, even though manganese alone was not significantly associated with CWD. This study demonstrated that mineral analysis may provide an additional disease correlate for assessing CWD risk, particularly in conjunction with genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent findings in the literature suggest a relation between histidine triad nucleotide-binding protein-1 (HINT1) and psychiatric disorders such as major depression, anxiety, and schizophrenia, although its physiological roles are not completely comprehended. Using Western blot, we compared HINT1 protein expression in the postmortem dorsolateral prefrontal cortex and thalamus of schizophrenia patients and healthy controls for contributing to elucidate the role of HINT1 in schizophrenia pathophysiology. HINT1 was found to be downregulated in the dorsolateral prefrontal cortex and upregulated in the thalamus. Our results combined to previous studies in human samples and preclinical models support the notion that HINT1 must be more explored as a potential target for psychiatric disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rat double-SAH model is one of the standard models to simulate delayed cerebral vasospasm (CVS) in humans. However, the proof of delayed ischemic brain damage is missing so far. Our objective was, therefore, to determine histological changes in correlation with the development of symptomatic and perfusion weighted imaging (PWI) proven CVS in this animal model. CVS was induced by injection of autologous blood in the cisterna magna of 22 Sprague-Dawley rats. Histological changes were analyzed on day 3 and day 5. Cerebral blood flow (CBF) was assessed by PWI at 3 tesla magnetic resonance (MR) tomography. Neuronal cell count did not differ between sham operated and SAH rats in the hippocampus and the cerebral cortex on day 3. In contrast, on day 5 after SAH the neuronal cell count was significantly reduced in the hippocampus (p<0.001) and the inner cortical layer (p=0.03). The present investigation provides quantitative data on brain tissue damage in association with delayed CVS for the first time in a rat SAH model. Accordingly, our data suggest that the rat double-SAH model may be suitable to mimic delayed ischemic brain damage due to CVS and to investigate the neuroprotective effects of drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard methods for the estimation of the postmortem interval (PMI, time since death), based on the cooling of the corpse, are limited to about 48 h after death. As an alternative, noninvasive postmortem observation of alterations of brain metabolites by means of (1)H MRS has been suggested for an estimation of the PMI at room temperature, so far without including the effect of other ambient temperatures. In order to study the temperature effect, localized (1)H MRS was used to follow brain decomposition in a sheep brain model at four different temperatures between 4 and 26°C with repeated measurements up to 2100 h postmortem. The simultaneous determination of 25 different biochemical compounds at each measurement allowed the time courses of concentration changes to be followed. A sudden and almost simultaneous change of the concentrations of seven compounds was observed after a time span that decreased exponentially from 700 h at 4°C to 30 h at 26°C ambient temperature. As this represents, most probably, the onset of highly variable bacterial decomposition, and thus defines the upper limit for a reliable PMI estimation, data were analyzed only up to this start of bacterial decomposition. As 13 compounds showed unequivocal, reproducible concentration changes during this period while eight showed a linear increase with a slope that was unambiguously related to ambient temperature. Therefore, a single analytical function with PMI and temperature as variables can describe the time courses of metabolite concentrations. Using the inverse of this function, metabolite concentrations determined from a single MR spectrum can be used, together with known ambient temperatures, to calculate the PMI of a corpse. It is concluded that the effect of ambient temperature can be reliably included in the PMI determination by (1)H MRS.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT: Glycerol is considered to be a marker of cell membrane degradation and thus cellular lysis. Recently, it has become feasible to measure via microdialysis cerebral extracellular fluid (ECF) glycerol concentrations at the patient's bedside. Therefore the aim of this study was to investigate the ECF concentration and time course of glycerol after severe traumatic brain injury (TBI) and its relationship to patient outcome and other monitoring parameters. METHODS: As soon as possible after injury for up to 4 days, 76 severely head-injured patients were monitored using a microdialysis probe (cerebral glycerol) and a Neurotrend sensor (brain tissue PO2) in uninjured brain tissue confirmed by computerized tomography scanning. The mean brain tissue glycerol concentration in all monitored patients decreased significantly from 206 +/- 31 micromol/L on Day 1 to 9 +/- 3 micromol/L on Day 4 after injury (p < 0.0001). Note, however, that there was no significant difference in the time course between patients with a favorable outcome (Glasgow Outcome Scale [GOS] Scores 4 and 5) and those with an unfavorable outcome (GOS Scores 1-3). Significantly increased glycerol concentrations were observed when brain tissue PO2 was less than 10 mm Hg or when cerebral perfusion pressure was less than 70 mm Hg. CONCLUSIONS: Based on results in the present study one can infer that microdialysate glycerol is a marker of severe tissue damage, as seen immediately after brain injury or during profound tissue hypoxia. Given that brain tissue glycerol levels do not yet add new clinically significant information, however, routine monitoring of this parameter following traumatic brain injury needs further validation.