923 resultados para boundary integral equation method
Resumo:
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non-locally perturbed half-plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound-soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
Aiming at the large scale numerical simulation of particle reinforced materials, the concept of local Eshelby matrix has been introduced into the computational model of the eigenstrain boundary integral equation (BIE) to solve the problem of interactions among particles. The local Eshelby matrix can be considered as an extension of the concepts of Eshelby tensor and the equivalent inclusion in numerical form. Taking the subdomain boundary element method as the control, three-dimensional stress analyses are carried out for some ellipsoidal particles in full space with the proposed computational model. Through the numerical examples, it is verified not only the correctness and feasibility but also the high efficiency of the present model with the corresponding solution procedure, showing the potential of solving the problem of large scale numerical simulation of particle reinforced materials.
Resumo:
The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with these by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two-layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coefficients and energies are analyzed in detail, and some interesting physical phenomena are observed.
Resumo:
Based on the eigen crack opening displacement (COD) boundary integral equations, a newly developed computational approach is proposed for the analysis of multiple crack problems. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix. The interactions among cracks are dealt with by two parts according to the distances of cracks to the current crack. The strong effects of cracks in adjacent group are treated with the aid of the local Eshelby matrix derived from the traction BIEs in discrete form. While the relatively week effects of cracks in far-field group are treated in the iteration procedures. Numerical examples are provided for the stress intensity factors of multiple cracks, up to several thousands in number, with the proposed approach. By comparing with the analytical solutions in the literature as well as solutions of the dual boundary integral equations, the effectiveness and the efficiencies of the proposed approach are verified.
Resumo:
A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.
Resumo:
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.
Resumo:
A boundary integral technique has been developed for the numerical simulation of the air flow for the Aaberg exhaust system. For the steady, ideal, irrotational air flow induced by a jet, the air velocity is an analytical function. The solution of the problem is formulated in the form of a boundary integral equation by seeking the solution of a mixed boundary-value problem of an analytical function based on the Riemann-Hilbert technique. The boundary integral equation is numerically solved by converting it into a system of linear algebraic equations, which are solved by the process of the Gaussian elimination. The air velocity vector at any point in the solution domain is then computed from the air velocity on the boundary of the solution domains.
Resumo:
A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.
Resumo:
Among the classical operators of mathematical physics the Laplacian plays an important role due to the number of different situations that can be modelled by it. Because of this a great effort has been made by mathematicians as well as by engineers to master its properties till the point that nearly everything has been said about them from a qualitative viewpoint. Quantitative results have also been obtained through the use of the new numerical techniques sustained by the computer. Finite element methods and boundary techniques have been successfully applied to engineering problems as can be seen in the technical literature (for instance [ l ] , [2], [3] . Boundary techniques are especially advantageous in those cases in which the main interest is concentrated on what is happening at the boundary. This situation is very usual in potential problems due to the properties of harmonic functions. In this paper we intend to show how a boundary condition different from the classical, but physically sound, is introduced without any violence in the discretization frame of the Boundary Integral Equation Method. The idea will be developed in the context of heat conduction in axisymmetric problems but it is hoped that its extension to other situations is straightforward. After the presentation of the method several examples will show the capabilities of modelling a physical problem.
Resumo:
After the extensive research on the capabilities of the Boundary Integral Equation Method produced during the past years the versatility of its applications has been well founded. Maybe the years to come will see the in-depth analysis of several conflictive points, for example, adaptive integration, solution of the system of equations, etc. This line is clear in academic research. In this paper we comment on the incidence of the manner of imposing the boundary conditions in 3-D coupled problems. Here the effects are particularly magnified: in the first place by the simple model used (constant elements) and secondly by the process of solution, i.e. first a potential problem is solved and then the results are used as data for an elasticity problem. The errors add to both processes and small disturbances, unimportant in separated problems, can produce serious errors in the final results. The specific problem we have chosen is especially interesting. Although more general cases (i.e. transient)can be treated, here the domain integrals can be converted into boundary ones and the influence of the manner in which boundary conditions are applied will reflect the whole importance of the problem.
Resumo:
The great developments that have occurred during the last few years in the finite element method and its applications has kept hidden other options for computation. The boundary integral element method now appears as a valid alternative and, in certain cases, has significant advantages. This method deals only with the boundary of the domain, while the F.E.M. analyses the whole domain. This has the following advantages: the dimensions of the problem to be studied are reduced by one, consequently simplifying the system of equations and preparation of input data. It is also possible to analyse infinite domains without discretization errors. These simplifications have the drawbacks of having to solve a full and non-symmetric matrix and some difficulties are incurred in the imposition of boundary conditions when complicated variations of the function over the boundary are assumed. In this paper a practical treatment of these problems, in particular boundary conditions imposition, has been carried out using the computer program shown below. Program SERBA solves general elastostatics problems in 2-dimensional continua using the boundary integral equation method. The boundary of the domain is discretized by line or elements over which the functions are assumed to vary linearly. Data (stresses and/or displacements) are introduced in the local co-ordinate system (element co-ordinates). Resulting stresses are obtained in local co-ordinates and displacements in a general system. The program has been written in Fortran ASCII and implemented on a 1108 Univac Computer. For 100 elements the core requirements are about 40 Kwords. Also available is a Fortran IV version (3 segments)implemented on a 21 MX Hewlett-Packard computer,using 15 Kwords.
Resumo:
This paper presents a computer program developed to run in a micro I.B.M.-P.C. wich incorporates some features in order to optimize the number of operations needed to compute the solution of plane potential problems governed by Laplace's equation by using the Boundary Integral Equation Method (B.I.E.M.). Also incorporated is a routine to plot isolines inside the domain under study.