918 resultados para blood clotting factor 5 Leiden
Resumo:
Resistance baselines were obtained for the first generation anticoagulant rodenticides chlorophacinone and diphacinone using laboratory, caesarian-derived Norway rats (Rattus norvegicus) as the susceptible strain and the blood clotting response test method. The ED99 estimates for a quantal response were: chlorophacinone, males 0.86 mg kg−1, females 1.03 mg kg−1; diphacinone, males 1.26 mg kg−1, females 1.60 mg kg−1. The dose-response data also showed that chlorophacinone was significantly (p<0.0001) more potent than diphacinone for both male and female rats, and that male rats were more susceptible than females to both compounds (p<0.002). The ED99 doses were then given to groups of five male and five female rats of the Welsh and Hampshire warfarin-resistant strains. Twenty-four hours later, prothrombin times were slightly elevated in both strains but all the animals were classified as resistant to the two compounds, indicating cross-resistance from warfarin to diphacinone and chlorophacinone. When rats of the two resistant strains were fed for six consecutive days on baits containing either diphacinone or chlorophacinone, many animals survived, indicating that their resistance might enable them to survive treatments with these compounds in the field.
Resumo:
A mutation in the factor XIII gene (FXIII Val34Leu) gene was recently reported to confer protection against myocardial infarction, but its relationship with venous thrombosis is unknown. In addition, a mutation in the 5'-untranslated region of the FXII gene (46 C→T) was identified which is associated with low plasma levels of the protein. Its prevalence in patients with venous thrombosis is also unknown. We investigated the frequency of the FXIII Val34Leu and FXII 46 C→T mutations in 189 patients with deep venous thrombosis and in 187 age-, gender- and race-matched controls. FXIII Val34Leu was detected in 38.6% of the patients and in 41.2% of the controls. Interestingly, homozygosity for the FXIII mutation was found in 1.6% of the patients and in 9.6% of the controls. yielding an odds ratio (OR) for venous thrombosis of 0.16 (95% CI: 0.05-0.5). The OR for heterozygotes was 1.1 (95% CI: 0.7-1.7). The FXII 46 C→T mutation was detected in 46.0% of the patients and in 48.6% of the controls. The OR for heterozygotes was 0.9 (95% CI: 0.6-1.4) and for homozygotes the OR was 0.8 (95% CI: 0.3-1.9). Our data indicate that the FXII 46 C→T mutation is unlikely to be a major risk factor for venous thrombotic disease. In contrast, the homozygous state for FXIII Val34Leu is a strong protective factor against venous thrombosis, which emerges as a novel generic factor involved in the aetiology of thrombophilia.
Resumo:
Factor Xa, the converting enzyme of prothrombin to thrombin, has emerged as an alternative (to thrombin) target for drug discovery for thromboembolic diseases. An inhibitor has been synthesized and the crystal structure of the complex between Des[1–44] factor Xa and the inhibitor has been determined by crystallographic methods in two different crystal forms to 2.3- and 2.4-Å resolution. The racemic mixture of inhibitor FX-2212, (2RS)-(3′-amidino-3-biphenylyl)-5-(4-pyridylamino)pentanoic acid, inhibits factor Xa activity by 50% at 272 nM in vitro. The S-isomer of FX-2212 (FX-2212a) was found to bind to the active site of factor Xa in both crystal forms. The biphenylamidine of FX-2212a occupies the S1-pocket, and the pyridine ring makes hydrophobic interactions with the factor Xa aryl-binding site. Several water molecules meditate inhibitor binding to residues in the active site. In contrast to the earlier crystal structures of factor Xa, such as those of apo-Des[1–45] factor Xa and Des[1–44] factor Xa in complex with a naphthyl inhibitor DX-9065a, two epidermal growth factor-like domains of factor Xa are well ordered in both our crystal forms as well as the region between the two domains, which recently was found to be the binding site of the effector cell protease receptor-1. This structure provides a basis for designing next generation inhibitors of factor Xa.
Resumo:
Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.
Resumo:
Melbourne-based manufacturer Muller Industries Australia’s new cooling system saves 80 per cent of the average water usage in commercial office buildings that use water-based cooling towers.
Resumo:
Cement production is estimated to be responsible for approximately 6 per cent of total global greenhouse gas emissions. One of the most promising alternatives to common Portland cement is geopolymer cement, and Australian company Zeobond is a bone fide leader in its manufacture.
Resumo:
A specific activator of blood coagulation factor X was purified from the venom of Bungarus fasciatus by gel filtration and by ion-exchange chromatography on a Mono-Q column (FPLC). It consisted of a single polypeptide chain, with a mel. wt of 70,000 in reducing and non-reducing conditions. The enzyme had an amidolytic activity towards the chromogenic substrates S-2266 and S-2302 but it did not hydrolyse S-2238, S2251 or S-2222, which are specific substrates for thrombin, plasmin and factor Xa, respectively. The enzyme activated factor X in vitro and the effect was Ca2+ dependent with a Hill coefficient of 7.9. As with physiological activators, the venom activator cleaves the heavy chain of factor X, producing the activated factor Xa alpha. The purified factor X activator from B. fasciatus venom did not activate prothrombin, nor did it cleave or clot purified fibrinogen. The amidolytic activity and the factor X activation activity of the factor X activator from B. fasciatus venom were readily inhibited by serine protease inhibitors such as diisopropyl fluorophosphate (DFP), phenylmethanesulfonyl fluoride (PMSF), benzamidine and by soybean trypsin inhibitor but not by EDTA. These observations suggest that the factor X activator from B. fasciatus venom is a serine protease. It therefore differs from those of activators obtained from Vipera russelli and Bothrops atrox venoms, which are metalloproteinases.
Resumo:
A blood coagulation factor IX-binding protein (TSV-FIX-BP) was isolated from the snake venom of Trimeresurus stejnegeri. On SDS-polyacrylamide gel electrophoresis, TSV-FIX-BP showed a single band with an apparent molecular weight of 23,000 under non-reducing conditions. and two distinct bands with apparent molecular weights of 14,800 and 14,000 under reducing conditions. cDNA clones containing the coding sequences of TSV-FIX-BP were isolated and sequenced to determine the structure of the precusors of TSV-FIX-BP subunits. The deduced amino acid sequences of two subunits of TSV-FIX-BP were confirmed by N-terminal protein sequencing and trypsin-digested peptide mass fingerprinting. TSV-FIX-BP was a nonenzymatic C-type lectin-like anti-coagulant. The anti-coagulant activity of TSV-FIX-BP was mainly caused by its dose dependent interaction with blood coagulation factor IX but not with blood coagulation factor X. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Growth differentiation factor-5 (GDF-5) is a member of the transforming growth factor-β superfamily, a family of proteins that play diverse roles in many aspects of cell growth, proliferation and differentiation. GDF-5 has also been shown to be a trophic factor for embryonic midbrain dopaminergic neurons in vitro (Krieglstein et al. 1995) and after transplantation to adult rats in vivo (Sullivan et al. 1998). GDF-5 has also been shown to have neuroprotective and neurorestorative effects on adult dopaminergic neurons in the substantia nigra in animal models of Parkinson’s disease (Sullivan et al. 1997, 1999; Hurley et al. 2004). This experimental evidence has lead to GDF-5 being proposed as a neurotrophic factor with potential for use in the treatment of Parkinson’s disease. However, it is not know if GDF-5 is expressed in the brain and whether it plays a role in dopaminergic neuron development. The experiments presented here aim to address these questions. To that end this thesis is divided into five separate studies each addressing a particular question associated with GDF-5 and its expression patterns and roles during the development of the rat midbrain. Expression of the GDF-5 in the developing rat ventral mesencephalon (VM) was found to begin at E12 and peak on E14, the day that dopaminergic neurons undergo terminal differentiation. In the adult rat, GDF-5 was found to be restricted to heart and brain, being expressed in many areas of the brain, including striatum and midbrain. This indicated a role for GDF-5 in the development and maintenance of dopaminergic neurons. The appropriate receptors for GDF-5 (BMPR-II and BMPR-Ib) were found to be expressed at high levels in the rat VM at E14 and BMPR-II expression was demonstrated on dopaminergic neurons in the E13 mouse VM. GDF-5 resulted in a three-fold increase in the numbers of dopaminergic neurons in cultures of E14 rat VM, without affecting the numbers of neurones or total cells. GDF-5 was found to increase the proportion of neurons that were dopaminergic. The numbers of Nurr1-positive cells were not affected by GDF-5 treatment, but GDF-5 did increase the numbers of Nurr1- positive cells that expressed tyrosine hydroxylase (TH). Taken together this data indicated that GDF-5 increases the conversion of Nurr1-positive, TH-negative cells to Nurr1-positive, TH-positive cells. In GDF-5 treated cultures, total neurite length, neurite arborisation and somal area of dopaminergic were all significantly increased compared to control cultures. Thus this study showed that GDF-5 increased the numbers and morphological differentiation of VM dopaminergic neurones in vitro. In order to examine if GDF-5 could induce a dopaminergic phenotype in neural progenitor cells, neurosphere cultures prepared from embryonic rat VM were established. The effect of the gestational age of the donor VM on the proportion of cell types generated from neurospheres from E12, E13 and E14 VM was examined. Dopaminergic neurons could only be generated from neurospheres which were prepared from E12 VM. Thus in subsequent studies the effect of GDF-5 on dopaminergic induction was examined in progentior cell cultures prepared from the E12 rat VM. In primary cultures of E12 rat VM, GDF-5 increased the numbers of TH-positive cells without affecting the proliferation or survival of these cells. In cultures of expanded neural progenitor cells from the E12 rat VM, GDF-5 increased the expression of Nurr1 and TH, an action that was dependent on signalling through the BMPR-Ib receptor. Taken together, these experiments provide evidence that GDF-5 is expressed in the developing rat VM, is involved in both the induction of a dopaminergic phenotype in cells of the VM and in the subsequent morphological development of these dopaminergic neurons
Resumo:
Blood clotting response (BCR) resistance tests are available for a number of anticoagulant rodenticides. However, during the development of these tests many of the test parameters have been changed, making meaningful comparisons between results difficult. It was recognised that a standard methodology was urgently required for future BCR resistance tests and, accordingly, this document presents a reappraisal of published tests, and proposes a standard protocol for future use (see Appendix). The protocol can be used to provide information on the incidence and degree of resistance in a particular rodent population; to provide a simple comparison of resistance factors between active ingredients, thus giving clear information about cross-resistance for any given strain; and to provide comparisons of susceptibility or resistance between different populations. The methodology has a sound statistical basis in being based on the ED50 response, and requires many fewer animals than the resistance tests in current use. Most importantly, tests can be used to give a clear indication of the likely practical impact of the resistance on field efficacy. The present study was commissioned and funded by the Rodenticide Resistance Action Committee (RRAC) of CropLife International.
Resumo:
The structure of tick anticoagulant peptide (TAP) has been determined by X-ray crystallography at t.6 Å resolution complexed with bovine pancreatic trypsin inhibitor (BPTI). The TAP-BPTI crystals are tetragonal, a = b = 46.87, c = 50.35 Å, space group P41, four complexes per unit cell. The TAP molecules are highly dipolar and form an intermolecular helical array along the c-axis with a diameter of about 45 Å. Individual TAP units interact in a head-to-tail fashion, the positive end of one molecule associating with the distal negative end of another, and vice versa. The BPTI molecules have a uniformly distributed positively charged surface that interacts extensively through 14 hydrogen bonds and two hydrogen bonded salt bridges with the helical groove around the helical TAP chains. Comparing the structure of TAP in TAP-BPTI with TAP bound to factor Xa(Xa) suggests a massive reorganization in the N-terminal tetrapeptide and the first disulfide loop of TAP (CyS5(T)- Cys 15(T)) upon binding to Xa. The Tyr1(T)OH atom of TAP moves 14.2 Å to interact with Asp189 of the S1 specificity site, Arg3(T)CZ moves 5.0 Å with the guanidinium group forming a cation-π-electron complex in the S4 subsite of Xa, while Lys7(T)NZ differs in position by 10.6 Å in TAP-BPTI and TAP-Xa, all of which indicates a different pre-Xa-bound conformation for the N- terminal of TAP in its native state. In contrast to TAP, the BPTI structure of TAP-BPTI is practically the same as all those of previously determined structures of BPTI, only arginine and lysine side-chain conformations showing significant differences.
Resumo:
The von Willebrand disease (vWD) is a hereditary coagulopathy. There is no gender predilection. Clinically characterized by mucocutaneous bleeding, especially nose bleeding, menorrhagia and bleeding after trauma. This article reports a case of a 52-year-old Caucasian male patient with vWD, who presented with extensive bleeding in the tongue after a lacerating injury caused by accidental biting, and describes some clinical, pathological and treatment aspects of vWD. After repeated attempts to suture the wound and replace clotting factors, a decision was made to perform the ligature of the external carotid artery ipsilateral to the injury. There was favorable resolution of the case, with a good aspect of the scar 2 months after ligation. This case reinforces that it is extremely important to make a thorough review of medical history of all patients, searching for possible bleeding disorders or previous family history.
Resumo:
Inherited resistance to activated protein C caused by the factor V Leiden (FVL) mutation is the most common genetic cause of venous thrombosis yet described, being found in 20-60% of patients with venous thrombophilia. A relationship between the FVL mutation and an increased predisposition to arterial thrombosis in young women was recently reported. We assessed the prevalence of the FVL mutation in 440 individuals (880 chromosomes) belonging to four different ethnic groups: Caucasians, African Blacks, Asians and Amerindians. PCR amplification followed by MnlI digestion was employed to define the genotype. The FVL mutation was found in a heterozygous state in four out of 152 Whites (2.6%), one out of 151 Amerindians (0.6%), and was absent among 97 African Blacks and 40 Asians. Our results confirm that FVL has a heterogeneous distribution in different human populations, a fact that may contribute to geographic and ethnic differences in the prevalence of thrombotic diseases. In addition, these data may be helpful in decisions regarding the usefulness of screening for the FVL mutation in subjects at risk for thrombosis.