900 resultados para birth defects
Resumo:
" ... supported by grant/cooperative agreement number U50/CCU523303 from the U.S. Centers for Disease Control and Prevention."--Page ii.
Resumo:
Cover title.
Resumo:
Description based on: 1989-1994.
Resumo:
Item 985
Resumo:
Since the U.S.-led invasion of Iraq in 2003, epidemics of birth defects and cancers are rising in many Iraqi cities. In 2012, the World Health Organization (WHO) and the Iraqi Ministry of Health (MoH) undertook a large-scale epidemiological study to determine the prevalence of birth defects in the Iraqi population. A report which appeared on the WHO website in September 2013, claims that "The rates for spontaneous abortion, stillbirths and congenital birth defects found in the [Iraq] study are consistent with or even lower than international estimates." This article discusses the severe shortcomings of this report and questions its reliability .
Resumo:
Apologies to the many papers we were unable to cite, due to space constraints. We thank Lynda Erskine, Shaunna Beedie and Chris Mahony for helpful discussions. Lucas Rosa Fraga is funded by a PhD scholarship from the Science without Borders program - CNPq Brazil - INAGEMP/ Grant CNPq 573993/2008-4. Alex J. Diamond is funded by a BBSRC DTP PhD Scholarship.
Resumo:
Apologies to the many papers we were unable to cite, due to space constraints. We thank Lynda Erskine, Shaunna Beedie and Chris Mahony for helpful discussions. Lucas Rosa Fraga is funded by a PhD scholarship from the Science without Borders program - CNPq Brazil - INAGEMP/ Grant CNPq 573993/2008-4. Alex J. Diamond is funded by a BBSRC DTP PhD Scholarship.
Resumo:
Birth defects are a leading cause of infant mortality. Additionally, babies born with birth defects who survive infancy have a greater chance of illness and long term disability than babies without birth defects. The causes can involve genetic (such as chromosomal anomalies) or environmental (such as lead exposure during pregnancy) factors, or a combination of these factors. However, in about 70 percent of cases of birth defects, the causes are unknown. The South Carolina Birth Defects Program began in July 2006 after passage of the S.C. Birth Defects Act. This law mandates active surveillance of major structural birth defects identified prenatally through age two. South Carolina monitors over 50 birth defects recommended by the Centers for Disease Control and Prevention, National Birth Defects Prevention Network.
Resumo:
The South Carolina Birth Defects Program began in July 2006 after passage of the SC Birth Defects Act. This law mandates active surveillance of major birth defects identified before birth through age 2. South Carolina monitors over 50 birth defects recommended by the Centers for Disease Control and Prevention and the National Birth Defects Prevention Network. The most common birth defects in South Carolina in 2014 were: 1. Ventricular Septal Defect 2. Down Syndrome 3. Pulmonary Valve Atresia and Stenosis 4. Obstructive Genitourinary Defect.
Resumo:
Objective. Congenital limb defects are common birth defects occurring in approximately 2-7/10,000 live births. Because congenital limb defects are pervasive throughout all populations, and the conditions profoundly affect quality of life, they represent a significant public health concern. Currently there is a paucity of etiologic information in the literature regarding congenital limb reduction defects which represents a major limitation in developing treatment strategies as well as identifying high risk pregnancies. ^ Additionally, despite the fact that the majority of congenital limb reduction defects are isolated, most previous studies have not separated them from those occurring as part of a known syndrome or with multiple additional congenital anomalies of unknown etiology. It stands to reason that factors responsible for multiple congenital anomalies that happen to include congenital limb reduction defects may be quite different from those factors leading to an isolated congenital limb reduction defect. ^ As a first step toward gaining etiologic understanding, this cross-sectional study was undertaken to determine the birth prevalence and obtain demographic information about non-syndromic (isolated) congenital limb reduction defects that occurred in Texas from 1999-2001. ^ Methods. The study population included all infants/fetuses with isolated congenital limb reduction defects born in Texas during 1999-2001; the comparison population was all infants who were born to mothers who were residents of Texas during the same period of time. The overall birth prevalence of limb reduction defects was determined and adjusted for ethnicity, gender, site of defect (upper limb versus lower limb), county of residence, maternal age and maternal education. ^ Results. In Texas, the overall birth prevalence of isolated CLRDs was 2.1/10,000 live births (1.5 and 0.6/10,000 live births for upper limb and lower limb, respectively). ^ The risk of isolated lower limb CLRDs in Texas was significantly lower in females when gender was examined individually (crude prevalence odds ratio of 0.57, 95% CI of 0.36-0.91) as well as in relation to all other variables used in the analysis (adjusted prevalence odds ratio of 0.58, 95% CI of 0.36-0.93). ^ Harris County (which includes the Houston metropolitan area) had significantly lower risks of all (upper limb and lower limb combined) isolated CLRDs when examined in relation to other counties in Texas, with a crude prevalence odds ratio of 0.4 (95% CI: 0.29-0.72) and an adjusted prevalence odds ratio of 0.50 (95% CI: 0.31-0.80). The risk of isolated upper limb CLRDs was significantly lower in Harris County (crude prevalence odds ratio of 0.45, CI of 0.26-0.76 and adjusted prevalence odds ratio of 0.49, CI of 0.28-0.84). This trend toward decreased risk in Harris County was not observed for isolated lower limb reduction defects (adjusted prevalence odds ratio of 0.50, 95% confidence interval: 0.22-1.12). ^ Conclusions. The birth prevalence of isolated congenital limb reduction defects in Texas is in the lower limits of the range of rates that have been reported by other authors for other states (Alabama, Arkansas, California, Georgia, Hawaii, Iowa, Maryland, Massachusetts, North Carolina, Oklahoma, Utah, Washington) and other countries (Argentina, Australia, Austria, Bolivia, Brazil, Canada, Chile, China, Colombia, Costa Rica, Croatia, Denmark, Ecuador, England, Finland, France, Germany, Hungary, Ireland, Israel, Italy, Lithuania, Mexico, Norway, Paraguay, Peru, Spain, Scotland, Sweden, Switzerland, Uruguay, and Venezuela). In Texas, the birth prevalence of isolated congenital lower limb reduction defects was greater for males than females, while the birth prevalence of isolated congenital upper limb reduction defects was not significantly different between males and females. The reduced rates of limb reduction defects in Harris County warrant further investigation. This study has provided an important first step toward gaining etiologic understanding in the study of isolated congenital limb reduction defects. ^
Resumo:
Objective. The purpose of this study was to determine if there are associations between low parental education and congenital heart defects. ^ Methods. This was a cross-sectional study of 281,262 live born singletons, 1765 of whom were identified by the Texas Birth Defects Monitoring Division (TBDMD) as having heart defects without known chromosomal anomalies. Data on the specific diagnoses of these infants were linked to their corresponding birth certificates. Only infants born between January 1, 1995 and December 31, 1997, whose mothers resided in the Texas public health regions under surveillance by the TBDMD were included in the study. The number of years of schooling of the most educated parent was used to calculate crude, stratified and adjusted odds ratios. ^ Results. An increase in the likelihood of having an infant with any type of congenital heart defect was found among parents with less than 16 years of education, compared to those with 16 or more years of schooling. The association became more marked with increasing paternal age, and was found among whites and Hispanics but not among blacks. Statistically significant associations with low parental education were found for ventricular septal defects, transposition of the great vessels and miscellaneous heart and vessel defects. Among whites, there was an inverse association between parental education and likelihood of having an infant with a severe ASD. This association was not found among non-whites. The suggestion of an association between low parental education and tetralogy of Fallot, was also found, but was not statistically significant. Parents with ≥16 years of education had a greater likelihood of having an infant with severe endocardial cushion lesions or total anomalous pulmonary return than less well educated parents. ^ Conclusion. This study suggests that parental education is associated with certain types of heart defects, especially among whites and Hispanics. ^
Resumo:
Recent studies have reported positive associations between maternal exposures to air pollutants and several adverse birth outcomes. However, there have been no assessments of the association between environmental hazardous air pollutants (HAPs) such as benzene, toluene, ethylbenzene, and xylene (BTEX) and neural tube defects (NTDs) a common and serious group of congenital malformations. Before examining this association, two important methodological questions must be addressed: (1) is maternal residential movement likely to result in exposure misclassification and (2) is it appropriate to lump defects of the neural tube, such as anencephaly and spina bifida, into a composite disease endpoint (i.e., NTDs). ^ Data from the National Birth Defects Prevention Study and Texas Birth Defects Registry were used to: (1) assess the extent to which change of residence may result in exposure misclassification when exposure is based on the address at delivery; (2) formally assess heterogeneity of the associations between known risk factors for NTDs, using polytomous logistic regression; and (3) conduct a case-control study assessing the association between ambient air levels of BTEX and the risk of NTDs among offspring. ^ Regarding maternal residential mobility, this study suggests address at delivery was not significantly different from using address at conception when assigning quartile of benzene exposure (OR 1.0, 95% CI 0.9, 1.3). On the question of effect heterogeneity among NTDs, the effect estimates for infant sex P = 0.017), maternal body mass index P = 0.016), and folate supplementation P = 0.050) were significantly different for anencephaly and spina bifida, suggesting it is often more appropriate to assess potential risk factors among subgroups of NTDs. For the main study question on the association between environmental HAPs and NTDs, mothers who have offspring with isolated spina bifida are 2.4 times likely to live in areas with the highest benzene levels (95% CI 1.1, 5.0). However, no other significant associations were observed.^ This project is the first to include not only an assessment of the relationship between environmental levels of BTEX and NTDs, but also two separate studies addressing important methodological issues associated with this question. Our results contribute to the growing body of evidence regarding air pollutant exposure and adverse birth outcomes. ^
Resumo:
Objective. To conduct a systematic review of published literature on preconception care in pre-existing diabetic women looking at the effect of glycemic control and multivitamin usage on the frequency of spontaneous abortion and birth defects.^ Methods. Articles were retrieved from Medline (1950–Dec 2007), Cochrane Library (1800–Dec 2007), Academic Search Complete (Ebsco) (Jan 1800–Dec 2007) and Maternal and Child Health Library (1965–Dec 2007). Studies included women with pre-existing, non-gestational diabetes and a comparison group. Participants must have either received preconception care and/or consumed a multivitamin as part of the study.^ Results. Overall, seven studies met the study criteria and applicability to the study objectives. Four of these reported the frequency of spontaneous abortion. Only one found a statistically significant increased risk of spontaneous abortion among pregnant women who did not receive preconception care compared with those who did receive care, odds ratio 4.32; 95% CI 1.34 to 13.9. Of the seven studies, six reported the frequency of birth defects. Five of these six studies found a significantly increased rate of birth defects among pregnant women who did not receive preconception care compared with those who did receive care, with odds ratios ranging from 1.53 to 10.16. All seven studies based their preconception care intervention on glycemic control. One study also used multivitamins as part of the preconception care.^ Conclusion. Glycemic control was shown to be useful in reducing the prevalence of birth defects, but not as useful in reducing the prevalence of spontaneous abortion. Insulin regimen options vary widely for the diabetic woman. No author excluded or controlled for women who may have been taking a multivitamin on their own. Due to the small amount of literature available, it is still not known which preconception care option, glucose control and/or multivitamin usage, provides better protection from birth defects and spontaneous abortion for the diabetic woman. An area for future investigation would be glycemic control and the use of folic acid started before pregnancy and the effects on birth defects and spontaneous abortion.^
Resumo:
Left ventricular outflow tract (LVOT) defects are an important group of congenital heart defects (CHDs) because of their associated mortality and long-term complications. LVOT defects include aortic valve stenosis (AVS), coarctation of aorta (CoA), and hypoplastic left heart syndrome (HLHS). Despite their clinical significance, their etiology is not completely understood. Even though the individual component phenotypes (AVS, CoA, and HLHS) may have different etiologies, they are often "lumped" together in epidemiological studies. Though "lumping" of component phenotypes may improve the power to detect associations, it may also lead to ambiguous findings if these defects are etiologically distinct. This is due to potential for effect heterogeneity across component phenotypes. ^ This study had two aims: (1) to identify the association between various risk factors and both the component (i.e., split) and composite (i.e., lumped) LVOT phenotypes, and (2) to assess the effect heterogeneity of risk factors across component phenotypes of LVOT defects. ^ This study was a secondary data analysis. Primary data were obtained from the Texas Birth Defect Registry (TBDR). TBDR uses an active surveillance method to ascertain birth defects in Texas. All cases of non complex LVOT defects which met our inclusion criteria during the period of 2002–2008 were included in the study. The comparison groups included all unaffected live births for the same period (2002–2008). Data from vital statistics were used to evaluate associations. Statistical associations between selected risk factors and LVOT defects was determined by calculating crude and adjusted prevalence ratio using Poisson regression analysis. Effect heterogeneity was evaluated using polytomous logistic regression. ^ There were a total of 2,353 cases of LVOT defects among 2,730,035 live births during the study period. There were a total of 1,311 definite cases of non-complex LVOT defects for analysis after excluding "complex" cardiac cases and cases associated with syndromes (n=168). Among infant characteristics, males were at a significantly higher risk of developing LVOT defects compared to females. Among maternal characteristics, significant associations were seen with maternal age > 40 years (compared to maternal age 20–24 years) and maternal residence in Texas-Mexico border (compared to non-border residence). Among birth characteristics, significant associations were seen with preterm birth and small for gestation age LVOT defects. ^ When evaluating effect heterogeneity, the following variables had significantly different effects among the component LVOT defect phenotypes: infant sex, plurality, maternal age, maternal race/ethnicity, and Texas-Mexico border residence. ^ This study found significant associations between various demographic factors and LVOT defects. While many findings from this study were consistent with results from previous studies, we also identified new factors associated with LVOT defects. Additionally, this study was the first to assess effect heterogeneity across LVOT defect component phenotypes. These findings contribute to a growing body of literature on characteristics associated with LVOT defects. ^
Resumo:
The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.