999 resultados para biotechnological application
Resumo:
The algae represent major producers of calcium carbonate and silica among the world's biota. Calcification involves the precipitation of CaCO3 from Ca2+ and CO32− ions. Algal calcification by coccolithophores may account for up to half of global oceanic CaCO3 production. Silicification, the transformation of silicic acid into skeletal material, occurs in a few algal groups. The abundant diatoms represent the major silicifiers, playing a key role in marine silica cycling. Fossilised diatomaceous deposits have long been exploited for building and filling materials. Biomineralisation of calcium and silicon require homeostatic ion controls that are well characterised for Ca2+ and H+ in coccolithophores. Calcification occurs in an alkalinised vesicle, while silicification requires an acidic pH. Research on silicification remains focused upon cell wall development. Initiation and development of structures that are mineralised intracellularly requires initiation and regulation by organic components within the vesicles. Low-temperature, low-pressure biogenic formation of silica and calcite has potential for biotechnological application in novel industrial processes.
Resumo:
The algae represent major producers of calcium carbonate and silica among the world's biota. Calcification involves the precipitation of CaCO3 from Ca2+ and CO32− ions. Algal calcification by coccolithophores may account for up to half of global oceanic CaCO3 production. Silicification, the transformation of silicic acid into skeletal material, occurs in a few algal groups. The abundant diatoms represent the major silicifiers, playing a key role in marine silica cycling. Fossilised diatomaceous deposits have long been exploited for building and filling materials. Biomineralisation of calcium and silicon require homeostatic ion controls that are well characterised for Ca2+ and H+ in coccolithophores. Calcification occurs in an alkalinised vesicle, while silicification requires an acidic pH. Research on silicification remains focused upon cell wall development. Initiation and development of structures that are mineralised intracellularly requires initiation and regulation by organic components within the vesicles. Low-temperature, low-pressure biogenic formation of silica and calcite has potential for biotechnological application in novel industrial processes.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2010.
Resumo:
Currently, prebiotics are all carbohydrates of relatively short chain length. An important group is the fructooligosaccharides, which are a special kind of prebiotics associated to their selective stimulation of the activity of certain groups of colonic bacteria that have a positive and beneficial effect on intestinal microbiota, reducing incidence of gastrointestinal infections, respiratory and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of fructooligosaccharides, such as solid-state fermentation utilizing various agroindustrial by-products. By optimizing the culture parameters, fructooligosaccharides yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of fructooligosaccharides. This paper is an overview on the results of recent studies on fructooligosacharides biosynthesis, physicochemical properties, sources, biotechnological production and applications.
Resumo:
IBA application for rooting of Eucalyptus benthamii Maiden and Cambage x Eucalyptus dunnii Maiden minicuttings. Eucalyptus has great importance in the forestry sector and many advances in the area of improvement have been achieved with the advent of biotechnological techniques. However, some promising genotypes still do not have multiplication protocols with cloning techniques, such as minicutting. The study aimed to evaluate IBA concentrations for survival, rooting and vegetative vigor of E. benthamii x E. dunnii minicuttings, and determine the maximum technical efficiency dose. Ministumps H12, H19 and H20 clones were cultivated in a clonal minigarden under a semi-hydroponic system. For rooting, the rninicutting basal portion was plunged in hydro-alcoholic solutions, whose concentrations were: 0; 2,000; 4,000; 6,000 and 8,000 mg L(-1) of IBA. The experiment was conducted in a completely randomized design, with the factors consisting of three clones and five IBA concentrations, with five replications, containing 10 minicuttings per replication. IBA positively influenced the minicutting rooting processes, with differentiated behavior between the clones, with 30.32 to 55.45% rooting variation. The positives increments occurred until the highest IBA concentration for H12 and H19 clones. However, the range between 4,000 and 6,000 mg L(-1) of IBA treatments promoted the best rooting results for the H20 clone.
Resumo:
CD133 antigen is an integral membrane glycoprotein that can bind with different cells. Originally, however. this cellular surface antigen was expressed in human stem cells and in various cellular progenitors of the haematopoietic system. Human cord blood has been described as an excellent source of CD133(+) haematopoietic progenitor cells with a large application potential. One of the main objectives of the present study is to describe for the first time the ultrastructural characteristics of CD133(+) stem cells using transmission electronic microscopy. Another objective of the manuscript is to demonstrate through transmission electronic microscopy the molecular image of magnetic nanoparticles connected to the stein cells of great biotechnological importance, as well as demonstrating the value of this finding for electronic paramagnetic resonance and its related nanobioscientific value. Ultrastructural results showed the monoclonal antibody anti-CD133 bound to the superparamagnetic nanoparticles by the presence of electrondense granules in cell membrane, as well as in the cytoplasm, revealing the ultrastructural characteristics of CD133(+) cells, exhibiting a round morphology with discrete cytoplasmic projections, having an active nucleus that follows this morphology. The cellular cytoplasm was filled up with mitochondrias, as well as microtubules and vesicles pinocitic. characterizing the process as being related to internalization of the magnetic nanoparticles that were endocyted by the cells in question. Electronic paramagnetic resonance analysis of the CD133(+) stem cells detected that the small (spectrum) generated by the labelled cells comes from the superparamagnetic nanoparticles that are bound to them. These results strongly suggest that these CD133(+) cells can be used in nanobiotechnology applications, with benefits in different biomedical areas.
Resumo:
La contaminación ambiental por metales pesados como el cromo y por compuestos orgánicos como los fenoles es un grave problema a nivel mundial debido a su toxicidad y a sus efectos adversos sobre los seres humanos, la flora y la fauna, tanto por su acumulación en la cadena alimentaria como por su continua persistencia en el medio ambiente. En un estudio preliminar, efectuado por nuestro laboratorio, se han detectado elevados niveles de estos contaminantes en sedimentos y efluentes en zonas industriales del sur de la provincia de Córdoba, lo cual plantea la necesidad de removerlos. Entre las tecnologías disponibles, la biorremediación, que se basa en el uso de sistemas biológicos, como los microorganismos, para la detoxificación y la degradación de contaminantes, se presenta como una alternativa probablemente más efectiva y de menor costo que las técnicas convencionales. Sin embargo, la aplicación de esta tecnología depende en gran parte de la influencia de las características particulares y específicas de la zona a remediar. En consecuencia, en primer lugar se caracterizará la zona de muestreo y se aislarán e identificarán microorganismos nativos de la región, tolerantes a cromo y fenol, a partir de muestras de suelo, agua y sedimentos, ya que podrían constituir una adecuada herramienta biotecnológica, mejor adaptada al sitio a tratar. Posteriormente se estudiará la biorremediación de Cr y fenol utilizando dichos microorganismos, analizando su capacidad para biotransformar, bioacumular o bioadsorber a estos contaminantes, y se determinarán las condiciones óptimas para el tratamiento. Se analizarán los posibles mecanismos fisiológicos, bioquímicos y moleculares involucrados en la remediación, que constituye una etapa crucial para el diseño de una estrategia adecuada y eficiente. Finalmente, se aplicará esta tecnología a escala reactor, como una primera aproximación al tratamiento a mayor escala. De esta manera se espera reducir los niveles de estos contaminantes y así minimizar el impacto ambiental que ellos producen en suelos y acuíferos. A futuro, la utilización de los microorganismos seleccionados, de manera individual o formando consorcios, para el tratamiento de efluentes industriales previa liberación al medio ambiente, o su uso en bioaumento, constituirían posibles alternativas de aplicación. Los principales impactos científico-tecnológicos del proyecto serán: (a) la generación de una nueva tecnología biológica de decontaminación de cromo y fenol, intentando presentar soluciones frente a una problemática ambiental que afecta a nuestra región, pero que además es común a la mayoría de los países, (b) la formación de nuevos recursos humanos en el área y (c) el trabajo en colaboración con otros grupos de investigación que se destacan en el área de biotecnología ambiental. Environmental pollution produced by heavy metals, such as chromium and organic compounds like phenolics is a serious global problem due to their toxicity, their adverse effects on human life, plants and animals, their accumulation in the food chains and also by their persistance in the environment. In a previous study performed in our laboratory, high levels of these pollutants were detected in sediments and effluents from industrial zones of the south of Cordoba Province, which determine the need to remove them. Among various technologies, bioremediation which is based on the use of biological systems, such as microorganisms, to detoxify and to degrade contaminants, is probably the most effective alternative, and it is less expensive than other conventional technologies. However, the application of this technology depends on the influence of the particular and specific characteristics of the zone to be remediate. As a consecuence, at the first time, the zone of sampling will be characterized and then, native microorganisms, tolerant to chromium and phenol, will be isolated from soils, water and sediments and identificated. These microorganisms would be an adequate biotechnological tool, more adapted to the conditions of the site to be remediate than other ones. Then, the ability of these selected microorganisms to biotransform, bioaccumulate or biosorbe chromium and phenol will be studied and the optimal conditions for the treatment will be determined. The possible physiological, biochemical and molecular mechanisms involved in bioremediation will be also analized, because this is a crucial step in the design of an adequate and efficient remediation strategy. Finally, this technology will be applied in a reactor, as an approximation to the treatment at a major scale. A reduction in the levels of these pollutants will be expected, to minimize their environmental impact on soils and aquifers.
Resumo:
Plant cell cultures constitute a promise for the production of a high number of phytochemicals, although the majority ofbioprocesses that have been developed so far have not resultedcommercially successful. An overview indicates that most of theresearch carried out until now is of the empirical type. For this reason,there is a need for a rational approach to the molecular and cellularbasis of metabolic pathways and their regulation in order to stimulatefuture advances.The empirical investigations are based on the optimization of theculture system, exclusively considering input factors such as theselection of cellular lines, type and parameters of culture, bioreactordesign and elicitor addition, and output factors such as cellular growth,the uptake system of nutrients, production and yield. In a rationalapproach towards the elucidation of taxol and related taxaneproduction, our group has studied the relationship between the taxaneprofile and production and the expression of genes codifying forenzymes that participate in early, intermediate and late steps of theirbiosynthesis in elicited Taxus spp cell cultures. Our results show that elicitors induce a dramatic reprogramming of gene expression in Taxus cell cultures, whichlikely accounts for the enhanced production of taxol and related taxanes and we have alsodetermined some genes that control the main flux limiting steps. The application ofmetabolic engineering techniques for the production of taxol and taxanes of interest is also discussed.
Resumo:
This study aimed to identify antioxidant peptides from caprine casein hydrolysates by papain application using MALDI-TOF mass spectrometer, and a 2² full factorial design, with 4 axial points, in order to evaluate kinetic parameters (time and pH) effects on the degree of hydrolysis as well as the antioxidant activity of Moxotó goat milk casein peptides. Degree of hydrolysis was determined by total and soluble protein ratio in casein. Antioxidant activity was measured by ABTS method with 2, 2-cation-azinobis (3-ethylbenzothiazoline-6-sulfonic acid). TROLOX was used as standard. Peptide pattern and sequence of antioxidant amino acids were obtained using MALDI-TOF/MS. The highest degree of hydrolysis (28.5%) and antioxidant activity (2329.6 mmol.L TROLOX. mg- 1 peptide) were observed in the permeate. NENLL, NPWDQVK and LLYQEPVLGPV peptides, detected in the permeate, were pointed as the responsible for antioxidant activity, suggesting their potential application as food supplement and pharmaceutical products.
Resumo:
Establishing the mechanisms by which microbes interact with their environment, including eukaryotic hosts, is a major challenge that is essential for the economic utilisation of microbes and their products. Techniques for determining global gene expression profiles of microbes, such as microarray analyses, are often hampered by methodological restraints, particularly the recovery of bacterial transcripts (RNA) from complex mixtures and rapid degradation of RNA. A pioneering technology that avoids this problem is In Vivo Expression Technology (IVET). IVET is a 'promoter-trapping' methodology that can be used to capture nearly all bacterial promoters (genes) upregulated during a microbe-environment interaction. IVET is especially useful because there is virtually no limit to the type of environment used (examples to date include soil, oomycete, a host plant or animal) to select for active microbial promoters. Furthermore, IVET provides a powerful method to identify genes that are often overlooked during genomic annotation, and has proven to be a flexible technology that can provide even more information than identification of gene expression profiles. A derivative of IVET, termed resolvase-IVET (RIVET), can be used to provide spatio-temporal information about environment-specific gene expression. More recently, niche-specific genes captured during an IVET screen have been exploited to identify the regulatory mechanisms controlling their expression. Overall, IVET and its various spin-offs have proven to be a valuable and robust set of tools for analysing microbial gene expression in complex environments and providing new targets for biotechnological development.
Resumo:
In this work, native xyloglucan was extracted from Tamarindus indica seeds (XGT), and its properties in phosphate buffer solution (PBS) were evaluated in comparison with a commercial tamarind kernel powder (TKP). The physico-chemical characteristics of the polysaccharides such as molar mass, critical concentration and intrinsic viscosity were determined. Furthermore, using spectroscopic and microscopy techniques, it was observed that the XGs tested can be considered macromolecules able to aggregate as nano-entities of 60-140 nm. The XGT tended to an ordered and compact spherical conformation determined by the Huggins constant, circular dichroism, atomic force microscopy and transmission electron microscopy. After the determination of the properties in PBS the XGs, at concentrations of 25% above their critical aggregation concentration, were used to encapsulate camptothecin, an anti-cancer drug. The XGT sample showed an encapsulation efficiency of 42% and first-order drug delivery kinetics. These results demonstrated the importance of knowledge of the physico-chemical properties of polysaccharides, for example, to better conduct their biotechnological applications as drug carriers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Since ancient times, the utilization of yeasts by the man has a great impact on the socio-economic development. After the advent of the technology of recombinant DNA, great advances have occurred due to the acquisition of strains of mutant yeasts in the field of applied research, and Saccharomyces cerevisiae has soon been outstanding as an interesting candidate for the expression of heterologous proteins of biotechnological interest. As the time goes by other alternative systems of expression have been shown because they have advantages over Saccharomyces cerevisiae. Among those new systems, Pichia pastoris is outstanding as methylotrophic yeast capable of growing in a culture medium containing methanol as the only source of carbon and energy. The induction of production of glycerol-3-phosphate dehydrogenase (GPD, NAD(+): oxido-redutase EC 1.1. 1.8) by Pichia pastoris was accomplished in the medium containing methanol. One of the most important key parameters in Pichia pastoris expression system is the methanol concentration. Bibliographic reviews on the Pichia pastoris production system have shown that the best culture conditions vary according to the strain used and/or kind of heterologous protein desired to be expressed. Therefore, we have sought to develop a system, involving expression of glycerol-3-phosphate dehydrogenase in the yeast Pichia pastoris, for generating sufficient quantities of the enzyme in order to asses its potential value for use in various food bioanalytical determination. Dehydrogenases have been widely used in the enzymatic assays of diverse composites of industrial interest, being enclosed among them glycerol and a number of important bioanalytical applications.
Resumo:
Background: New challenges are rising in the animal protein market, and one of the main world challenges is to produce more in shorter time, with better quality and in a sustainable way. Brazil is the largest beef exporter in volume hence the factors affecting the beef meat chain are of major concern in countrýs economy. An emerging class of biotechnological approaches, the molecular markers, is bringing new perspectives to face these challenges, particularly after the publication of the first complete livestock genome (bovine), which has triggered a massive initiative to put in practice the benefits of the so called the Post-Genomic Era. Review: This article aimed at showing the directions and insights in the application of molecular markers on livestock genetic improvement and reproduction as well at organizing the progress so far, pointing some perspectives of these emerging technologies in Brazilian ruminant production context. An overview on the nature of the main molecular markers explored in ruminant production is provided, which describes the molecular bases and detection approaches available for microsatellites (STR) and single nucleotide polymorphisms (SNP). A topic is dedicated to review the history of association studies between markers and important trait variation in livestock, showing the timeline starting on quantitative trait loci (QTL) identification using STR markers and ending in high resolution SNP panels to proceed whole genome scans for phenotype/genotype association. Also the article organizes this information to reveal how QTL prospection using STR could open ground to the feasibility of marker-assisted selection and why this approach is quickly being replaced by studies involving the application of genome-wide association using SNP research in a new concept called genomic selection. Conclusion: The world's scientific community is dedicating effort and resources to apply SNP information in livestock selection through the development of high density panels for genomic association studies, connecting molecular genetic data with phenotypes of economic interest. Once generated, this information can be used to take decisions in genetic improvement programs by selecting animals with the assistance of molecular markers.