477 resultados para biomimetic
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
A biomimetic total synthesis of bioactive tetracyclic natural product allomicrophyllone has been achieved in which a protective Diels-Alder reaction employing a disposable sacrificial 1,3-diene directs the regioselectivity of the subsequent Dials-Alder reaction. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Excitation energy migration followed by electron transfer forms the main components of natural photosynthesis. An understanding of these aspects is essential to reenact the primary processes in laboratory under conditions that are precisely repeatable. Here we describe the state of understanding of the natural process and several model systems designed to harvest solar energy and conversion to useful form of chemical energy. The molecular assemblies constituting the model systems offer a great advantage in terms of better comprehension of the mechanistic aspects and yield valuable information on the design of molecular photonic devices.
Resumo:
Ionic polymer metal composites (IPMC) are a new class of smart materials that have attractive characteristics such as muscle like softness, low voltage and power consumption, and good performance in aqueous environments. Thus, IPMC’s provide promising application for biomimetic fish like propulsion systems. In this paper, we design and analyze IPMC underwater propulsor inspired from swimming of Labriform fishes. Different fish species in nature are source of inspiration for different biomimetic flapping IPMC fin design. Here, three fish species with high performance flapping pectoral fin locomotion is chosen and performance analysis of each fin design is done to discover the better configurations for engineering applications. In order to describe the behavior of an active IPMC fin actuator in water, a complex hydrodynamic function is used and structural model of the IPMC fin is obtained by modifying the classical dynamic equation for a slender beam. A quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to estimate the hydrodynamic performance of the flapping rectangular shape fin. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus and Sthethojulis trilineata, are analyzed with numerical simulations. Finally, a comparative study is performed to analyze the performance of three different biomimetic IPMC flapping pectoral fins.
Resumo:
The interfacing of aromatic molecules with biomolecules to design functional molecular materials is a promising area of research. Intermolecular interactions determine the performance of these materials and therefore, precise control over the molecular organization is necessary to improve functional properties. Herein we describe the tunable biomimetic molecular engineering of a promising n-type organic semiconductor, naphthalene diimide (NDI), in the solid state by introducing minute structural mutations in the form of amino acids with variable Ca-functionality. For the first time we could achieve all four possible crystal packing modes, namely cofacial, brickwork, herringbone and slipped stacks of the NDI system. Furthermore, amino acid conjugated NDIs exhibit ultrasonication induced organogels with tunable visco-elastic and temperature responsive emission properties. The amino acid-NDI conjugates self-assemble into 0D nanospheres and 1D nanofibers in their gel state while the ethylamine-NDI conjugate forms 2D sheets from its solution. Photophysical studies indicated the remarkable influence of molecular ordering on the absorption and fluorescence properties of NDIs. Interestingly, the circular dichroism (CD) and X-ray diffraction (XRD) studies revealed the existence of helical ordering of NDIs in both solution and solid state. The chiral amino acids and their conformations with respect to the central NDI core are found to influence the nature of the helical organization of NDIs. Consequently, the origin of the preferential handedness in the helical organization is attributed to transcription of chiral information from the amino acid to the NDI core. On account of these unique properties, the materials derived from NDI-conjugates might find a wide range of future interdisciplinary applications from materials to biomedicine.
Resumo:
In this article, we analyze and design ionic polymer metal composite (IPMC) underwater propulsors inspired from swimming of labriform fishes. The structural model of the IPMC fin accounts for the electromechanical dynamics of the bean in water. A quasi steady blade element model that accounts for unsteady phenomena, such as added mass effects, dynamic stall, and cumulativeWagner effect is used to estimate the hydrodynamic performance. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus, and Sthethojulis trilineata, are analyzed using numerical simulations.
Resumo:
Fibrillar structures are common features on the feet of many animals, such as geckos, spiders and flies. Theoretical analyses often use periodical array to simulate the assembly, and each fibril is assumed to be of equal load sharing (ELS). On the other hand, studies on a single fibril show that the adhesive interface is flaw insensitive when the size of the fibril is not larger than a critical one. In this paper, the Dugdale Barenblatt model has been used to study the conditions of ELS and how to enhance adhesion by tuning the geometrical parameters in fibrillar structures. Different configurations in an array of fibres are considered, such as line array, square and hexagonal patterns. It is found that in order to satisfy flaw-insensitivity and ELS conditions, the number of fibrils and the pull-off force of the fibrillar interface depend significantly on the fibre separation, the interface interacting energy, the effective range of cohesive interaction and the radius of fibrils. Proper tuning of the geometrical parameters will enhance the pull-off force of the fibrillar structures. This study may suggest possible methods to design strong adhesion devices for engineering applications.
Resumo:
We propose a bio-inspired sequential quantum protocol for the cloning and preservation of the statistics associated to quantum observables of a given system. It combines the cloning of a set of commuting observables, permitted by the no-cloning and no-broadcasting theorems, with a controllable propagation of the initial state coherences to the subsequent generations. The protocol mimics the scenario in which an individual in an unknown quantum state copies and propagates its quantum information into an environment of blank qubits Finally, we propose a realistic experimental implementation of this protocol in trapped ions.
Resumo:
Comunicación a congreso (póster): 12th European Biological Inorganic Chemistry Conference (EuroBIC 12) Zurich, August 24-28 2014.