952 resultados para billygoat weed
Resumo:
Mike Day and colleagues recently published their paper 'Factors influencing the release and establishment of weed biocontrol agents' in Proceedings of the 16th Australian Weeds Conference. The CRC for Australian Weed Management facilitated an investigation into the factors influencing the release and establishment of weed biological control agents on a wide variety of Australian weeds. The investigation improved the understanding of post-release ecology of biocontrol agents and generated recommendations for best practice. Factors affecting successful establishment on the weed include host plant characteristics, size of releases, dispersal power of the agent, predation and parasitism, and climate. A best practice guide was produced by the CRC to assist practitioners in designing robust release strategies to increase rates of establishment.
Resumo:
Eve White, Anna Barnes and Gabrielle Vivian-Smith recently published their paper 'Dispersal and establishment of bird-dispersed weed and native species in early successional subtropical habitats' in Proceedings of the 16th Australian Weeds Conference. Eve also presented this paper at the conference. They investigated patterns of dispersal and establishment of bird-dispersed weeds and native species in early successional habitats in northern New South Wales. Patterns varied among growth forms, between native species and weeds, and among vegetation types. Their results indicated that the number of seeds dropped by birds is not necessarily a good predictor of recruitment and that post-dispersal factors, such as microsite characteristics, may be more important influences on seedling recruitment. This knowledge will assist with designing management strategies for bird-dispersed weeds in natural areas.
Resumo:
Growing agricultural crops in wide row spacings has been widely adopted to conserve water, to control pests and diseases, and to minimise problems associated with sowing into stubble. The development of herbicide resistance combined with the advent of precision agriculture has resulted in a further reason for wide row spacings to be adopted: weed control. Increased row spacing enables two different methods of weed control to be implemented with non-selective chemical and physical control methods utilised in the wide inter-row zone, with or without selective chemicals used on the on-row only. However, continual application of herbicides and tillage on the inter-row zone brings risks of herbicide resistance, species shifts and/or changes in species dominance, crop damage, increased costs, yield losses, and more expensive weed management technology.
Resumo:
Evaluating progress towards eradication is critically important because weed eradication programs are very expensive and may take more than 10 years to complete. The degree of confidence that can be placed in any measure of eradication progress is a function of the effort that has been invested in finding new infestations and in monitoring known infestations. Determining eradication endpoints is particularly difficult, since plants may be extremely difficult to detect when at low densities and it is virtually impossible to demonstrate seed bank exhaustion. Recent work suggests that an economic approach to this problem should be adopted. They propose some rules of thumb to determine whether to continue an eradication program or switch to an alternative management strategy.
Resumo:
Weed eradication programs often require 10 years or more to achieve their objective. It is important that progress is evaluated on a regular basis so that programs that are 'on track' can be distinguished from those that are unlikely to succeed. Earlier research has addressed conformity of eradication programs to the delimitation criterion. In this paper evaluation in relation to the containment and extirpation criteria is considered. Because strong evidence of containment failure (i.e. spread from infestations targeted for eradication) is difficult to obtain, it generally will not be practicable to evaluate how effective eradication programs are at containing the target species. However, chronic failure of containment will be reflected in sustained increases in cumulative infested area and thus a failure to delimit a weed invasion. Evaluating the degree of conformity to the delimitation and extirpation criteria is therefore sufficient to give an appraisal of progress towards the eradication objective. A significant step towards eradication occurs when a weed is no longer readily detectable at an infested site, signalling entry to the monitoring phase. This transition will occur more quickly if reproduction is prevented consistently. Where an invasion consists of multiple infestations, the monitoring profile (frequency distribution of time since detection) provides a summary of the overall effectiveness of the eradication program in meeting the extirpation criterion. Eradication is generally claimed when the target species has not been detected for a period equal to or greater than its seed longevity, although there is often considerable uncertainty in estimates of the latter. Recently developed methods, which take into consideration the cost of continued monitoring vs. the potential cost of damage should a weed escape owing to premature cessation of an eradication program, can assist managers to decide when to terminate weed eradication programs.
Resumo:
Biological control of weeds has been carried out in Fiji since 1911, when the seed-fly Ophiomyia lantanae was introduced in an attempt to control Lantana camara. In 1988, the thrips Liothrips mikaniae was introduced from Trinidad into the Solomon Islands in an attempt to undertake biocontrol of Mikania micrantha (mikania) in the Pacific. A small colony of the thrips was subsequently taken from the Solomon Islands to the Kerevat Lowlands Agricultural Experimental Station in New Britain, Papua New Guinea (PNG). Now two decades later and for the first time, a pathogenic rust fungus has been imported for use against mikania, one of Fiji’s and the Pacific’s worst invasive weeds.
Resumo:
A replicated trial to determine effective chemical control methods for the invasive species, basket asparagus (Asparagus aethiopicus L. cv. Sprengeri) was conducted at Currumbin Hill, Queensland, from June 1999 to August 2000. Four herbicides (metsulfuron-methyl, dicamba, glyphosate and diesel) were applied at different times of the year (winter, spring, summer and autumn). Neat diesel applied to adult crowns effectively killed basket asparagus. However, germination of basket asparagus and other weeds was not prevented. An overall spray of 0.06 g metsulfuron-methyl (0.1 g Brush-Off®) + 1 mL BS 1000® L-1 water gave slower but more selective long-term control of basket asparagus when compared to diesel, especially when applied in winter and spring. High rates of foliar applied dicamba were most effective in spring and glyphosate splatter gunned on base of stems in autumn. The combination of increased selectivity, ease of application and likelihood of reduced environmental impacts on native plants, other than coast she-oak (Casuarina equisetifolia L. var. incana Benth.), of metsulfuron-methyl makes it more suitable for controlling large infestations of basket asparagus.
Resumo:
Senna obtusifolia (sicklepod) is an invasive weed of northern Australia, where it significantly impacts agricultural productivity and alters natural ecosystem structure and function. Although currently restricted to northern regions, the potential for S. obtusifolia to spread south is not known. Using the eco-climatic model CLIMEX, this study simulated the potential geographic distribution of S. obtusifolia in Australia under two scenarios. Model parameters for both scenarios were derived from the distribution of S. obtusifolia throughout North and Central America. The first scenario used these base model parameters to predict the distribution of S. obtusifolia in Australia, whilst the second model predicted the distribution of a cold susceptible S. obtusifolia ecotype that is reported to occur in the USA. Both models predicted the potential for an extensive S. obtusifolia distribution, with the first model indicating suitable climatic conditions occurring predominantly in coastal regions from the Northern Territory, to far north Queensland and into northern Victoria. The cold susceptible ecotype displayed a comparatively reduced distribution in the southern parts of Australia, where inappropriate temperatures, a lack of thermal accumulation and cold stress restrict the invasion south to the coastal regions of central New South Wales. The extent of the predicted distribution of both ecotypes of S. obtusifolia reinforces the need for strategic management at a national scale.
Resumo:
Effective study in the native range to identify potential agents underpins all efforts in classical biological control of weeds. Good agents that demonstrate both a high degree of host specificity and the potential to be damaging are a very limited resource and must therefore be carefully studied and considered. The overseas component is often operationally difficult and expensive but can contribute considerably more than a list of herbivores attacking a particular target. While the principles underlying this foreign component have been understood for some time, recently developed technologies and methods can make very significant contributions to foreign studies. Molecular and genetic characterisations of both target weed and agent organism can be increasingly employed to more accurately define the identity and phylogeny of them. Climate matching and modelling software is now available and can be utilised to better select agents for particular regions of concern. Relational databases can store collection information for analysis and future enquiry while quantification of sampling effort, employment of statistical survey methods and analysis by techniques such as rarefaction curves contribute to efficient and effective searching. Obtaining good and timely identifications for discovered agent organisms is perhaps the most serious issue confronting the modern explorer. The diminishing numbers of specialist taxonomists employed at the major museums while international and national protocols demand higher standards of identity exacerbates the issue. Genetic barcoding may provide a very useful tool to overcome this problem. Native-range work also offers under-exploited opportunities for contributing towards predicting safety, abundance and efficacy of potential agents in their target environment.
Resumo:
We review key issues, available approaches and analyses to encourage and assist practitioners to develop sound plans to evaluate the effectiveness of weed biological control agents at various phases throughout a program. Assessing the effectiveness of prospective agents before release assists the selection process, while post-release evaluation aims to determine the extent that agents are alleviating the ecological, social and economic impacts of the weeds. Information gathered on weed impacts prior to the initiation of a biological control program is necessary to provide baseline data and devise performance targets against which the program can subsequently be evaluated. Detailed data on weed populations, associated plant communities and, in some instances ecosystem processes collected at representative sites in the introduced range several years before the release of agents can be compared with similar data collected later to assess agent effectiveness. Laboratory, glasshouse and field studies are typically used to assess agent effectiveness. While some approaches used for field studies may be influenced by confounding factors, manipulative experiments where agents are excluded (or included) using chemicals or cages are more robust but time-consuming and expensive to implement. Demographic modeling and benefit–cost analyses are increasingly being used to complement other studies. There is an obvious need for more investment in long-term post-release evaluation of agent effectiveness to rigorously document outcomes of biological control programs.
Resumo:
A strain of the rust Prospodium tuberculatum from Brazil was screened as a potential biocontrol agent against 40 Australian Lantana camara forms and 52 closely related, non-target plant species. Results under glasshouse conditions showed that the Brazilian rust strain is pathogenic to only two flower colour forms: pink and pink-edged red. Macro- and microsymptoms were recorded using 11 assessment categories and four susceptibility ratings. No macrosymptoms were observed on any of the non-target plants.
Resumo:
There has been recent interest in determining the upper limits to the feasibility of weed eradication. Although a number of disparate factors determine the success of an eradication program, ultimately eradication feasibility must be viewed in the context of the amount of investment that can be made. The latter should reflect the hazard posed by an invasion, with greater investment justified by greater threats. In simplest terms, the effort (and hence investment) to achieve weed eradication comprises the detection effort required to delimit an invasion plus the search and control effort required to prevent reproduction until extirpation occurs over the entire infested area. The difficulty of estimating the required investment at the commencement of a weed eradication program (as well as during periodic reviews) is a serious problem. Bioeconomics show promise in determining the optimal approach to managing weed invasions, notwithstanding ongoing difficulties in estimating the costs and benefits of eradication and alternative invasion management strategies. A flexible approach to the management of weed invasions is needed, allowing for the adoption of another strategy when it becomes clear that the probability of eradication is low, owing to resourcing or intractable technical issues. Whether the considerable progress that has been achieved towards eradication of the once massive witchweed invasion can be duplicated for other weeds of agricultural systems will depend to a large extent upon investment (. $250 million over 50 yr in this instance). Weeds of natural ecosystems seem destined to remain more difficult eradication targets for a variety of reasons, including higher impedance to eradication, more difficulty in valuing the benefits arising from eradication, and possibly less willingness to pay from society at large.
Resumo:
Aim: Birds play a major role in the dispersal of seeds of many fleshy-fruited invasive plants. The fruits that birds choose to consume are influenced by fruit traits. However, little is known of how the traits of invasive plant fruits contribute to invasiveness or to their use by frugivores. We aim to gain a greater understanding of these relationships to improve invasive plant management. Location: South-east Queensland, Australia. Methods: We measure a variety of fruit morphology, pulp nutrient and phenology traits of a suite of bird-dispersed alien plants. Frugivore richness of these aliens was derived from the literature. Using regressions and multivariate methods, we investigate relationships between fruit traits, frugivore richness and invasiveness. Results: Plant invasiveness was negatively correlated to fruit size, and all highly invasive species had quite similar fruit morphology [smaller fruits, seeds of intermediate size and few (<10) seeds per fruit]. Lower pulp water was the only pulp nutrient trait associated with invasiveness. There were strong positive relationships between the diversity of bird frugivores and plant invasiveness, and in the diversity of bird frugivores in the study region and another part of the plants' alien range. Main conclusions: Our results suggest that weed risk assessments (WRA) and predictions of invasive success for bird-dispersed plants can be improved. Scoring criteria for WRA regarding fruit size would need to be system-specific, depending on the fruit-processing capabilities of local frugivores. Frugivore richness could be quantified in the plant's natural range, its invasive range elsewhere, or predictions made based on functionally similar fruits.