942 resultados para azo dye
Resumo:
In this study we describe the electrochemical behavior of 5,10,15,20-tetrakis(2'-aminophenylporphyrin)manganese(III) chloride supported on a glassy carbon electrode, as well as the electrochemical preparation and characterization of thin films based on pyrrole-3-carboxylic acid. The electrocatalytic action of the electrode modified with the Mn(III) porphyrin toward an azo dye was tested, and the characteristic strong interaction between the incorporated metalloporphyrin and RR120 dye was verified. Copyright (c) 2006 Society of Porphyrins & Phthalocyanines.
Resumo:
Aspergillus niger on paramorphogenic form showed to be efficient adsorbent to reactive azo dye Procion Blue MX-G, where it has obtained rates of colour removal above 99% in acid pH, at 120 minutes of equilibrium time. Temperature did not exert expressive influence in the process, and the applicability of Freundlich's, isotherm suggest the occurrence of various molecules layers of adsorbed dye on the substratum surface.
Resumo:
The feasibility of the photobleaching of a textile azo dye, reactive orange 16 (C.I. 17757), in aqueous solution using titanium dioxide thin-film electrodes prepared by the sol-gel method was investigated. The best conditions for maximum photoelectrocatalytic degradation were found to be pH > 10 for Na2SO4 medium and pH < 6 for NaCl. In both situations, an applied potential of +1.0 V and low dye concentration are recommended, when 100% of color removal is obtained after 20 min of photoelectrocatalysis. The effects of side reaction pathway on the degradation rate of dye in sulfate and chloride medium were presented and the best performance are optimized to situations closed to that verified in the textile effluent. The influence of variables as applied potential, pH, supporting electrolyte and dye concentration on the kinetics of photoelectrochemical degradation also were investigated. Oxalic acid is identified by HPLC and UV-Vis spectrophotometric methods as the main degradation product generated after 180 min of photoelectrocatalysis of 4 x 10(-5) mol l(-1) dye in sodium sulphate pH 12 and NaCl pH 4.0 and a maximum reduction of 56 and 62% TOC was obtained, respectively. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Remazol brilliant orange 3R shows only a voltammetric peak for the reduction of the azo group. No peak was observed for the reduction of the sulfatoethylsulfone or vinylsulfone reactive groups. The reduction of a pre-protonated ate group involving a two-electron process, gives a hydrate derivative in acidic solution. In alkaline solution the reduction process occurs at more negative potential with the formation of an unstable hydrate compound which decomposes via HN-NH bond cleavage and loss of a sulfate group. Optimum conditions are given for the cathodic stripping voltammetric determination of dir: dye in aqueous solution. The optimum accumulation potential and time were 0 V and up to 60 s, respectively. Linear calibration graphs were obtained from 30 to 300 ng ml(-1) in pH 4 and 6.2 to 62 ng ml(-1) in pH 10. The limit of determination obtained was 1.5 ng ml(-1) (pH 10). The coefficient of variation was 2.6% (n = 7) at 62 ng ml(-1) of the reactive dye. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Experiments on the adsorption of Procion Scarlet MX-G by normal hyphae and by paramorphic colonies of Neurospora crassa were performed at pH 2.5, 4.5 and 6.5 at 30 degrees C. The measured adsorption isotherms were evaluated by the Freundlich and Langmuir equations. The removal of dye was most effective at pH 2.5 and more dye was adsorbed per unit mass of cells in the paramorphic cultures than in the normal hyphae. The statistical tests showed Langmuir's equation to give a better fit to the adsorption data.
Resumo:
Aspergillus niger on paramorphogenic form showed to be efficient adsorbent to reactive azo dye Procion Blue MX-G, where it has obtained rates of colour removal above 99% in acid pH, at 120 minutes of equilibrium time. Temperature did not exert expressive influence in the process, and the applicability of Freundlich's, isotherm suggest the occurrence of various molecules layers of adsorbed dye on the substratum surface.
Resumo:
Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. © 2012 Elsevier B.V..
Resumo:
This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1×10-4molL-1 and generation of 7.6×10-7molL-1 to 0.31×10-4molL-1 of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. © 2013 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Comparative Analysis of Azo Dye Biodegradation by Aspergillus oryzae and Phanerochaete chrysosporium
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)