99 resultados para asphaltenes
Resumo:
Marine-derived amorphous organic matter dominates hemipelagic and trench sediments in and around the Middle America Trench. These sediments contain, on the average, 1% to 2% total organic carbon (TOC), with a maximum of 4.8%. Their organic facies and richness reflect (1) the small land area of Guatemala, which contributes small amounts of higher land plant remains, and (2) high levels of marine productivity and regionally low levels of dissolved oxygen, which encourage deposition and preservation of marine organic remains. These sediments have good potential for oil but are now immature. For this reason, gaseous hydrocarbons like the ethane identified in the deep parts of the section, as at Sites 496 and 497, are probably migrating from a mature section at depth. The pelagic sediments of the downgoing Cocos Plate are lean in organic carbon and have no petroleum potential
Resumo:
The Albian/Cenomanian strata in Hole 530A are organically richer than are the post-Cenomanian strata. Organic matter is thermally immature and appears to be of dominantly marine origin with either variable levels of oxidation or variable amounts of terrestrial input. Geochemical data alone cannot establish whether the black shales present in Hole 530A represent deposition within a stagnant basin or within an expanded oxygen-minimum layer
Resumo:
LECO analysis, pyrolysis assay, and bitumen and elemental analysis were used to characterize the organic matter of 23 black shale samples from Deep Sea Drilling Project Leg 93, Hole 603B, located in the western North Atlantic. The organic matter is dominantly gas-prone and/or refractory. Two cores within the Turonian and Cenomanian, however, contained significant quantities of well-preserved, hydrogen-enriched, organic matter. This material is thermally immature and represents a potential oil-prone source rock. These sediments do not appear to have been deposited within a stagnant, euxinic ocean as would be consistent with an "oceanic anoxic event." Their organic geochemical and sedimentary character is more consistent with deposition by turbidity currents originating on the continental shelf and slope.
Resumo:
Complex investigations of recent and ancient Black Sea sediments from the outer shelf, continental slope, and deep-water basin of the Russian Black Sea sector have been carried out. Samples were collected during Cruise 100 of R/V Professor Shtokman organized by the P.P. Shirshov Institute of Oceanology (March 2009) and expedition of UZHMORGEO (summer 2006). Rates of the main anaerobic processes during diagenesis (sulfate reduction, dark CO2 assimilation, methanogenesis, and methane oxidation) were studied for the first time in sediment cores of the studied area. Two peaks in the rate of microbial processes and two sources of these processes were identified: the upper peak near the water-sediment contact is related to solar energy (OM substrate of the water column) and the lower peak at the base of ancient Black Sea sediments with high(>1 mmol) methane concentration related to energy of anaerobic methane oxidation. New labile OM formed during this process is utilized by other groups of microorganisms. According to experimental data, daily rate of anaerobic methane oxidation is many times higher than that of methanogenesis, which unambiguously indicates migration nature of the main part of methane.
Resumo:
As part of an ongoing program of organic geochemical studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal alteration indices of organic matter collected from the Pacific continental margin of southern Mexico on Leg 66. The samples were pieces of core frozen aboard ship. Some of them were analyzed by pyrolysis, heavy C15+ hydrocarbons, and nonhydrocarbons to help determine their origin and hydrocarbon potential. Our main objectives were to find out how much organic matter was being deposited; to establish whether it derived from marine or terrestrial sources; to determine the controls of deposition of organic matter; to estimate the hydrocarbon potential of the drilled section; and to compare and contrast organic sedimentation here with that on other margins.
Resumo:
The organic facies of Cenozoic sediments cored at DSDP Sites 548-551 along the Celtic Sea margin of the northern North Atlantic (Goban Spur) is dominated by terrestrially derived plant remains and charcoal. Similar organic facies also occur in the Lower and Upper Cretaceous sections at these sites. Mid-Cretaceous (uppermost Albian-Turonian) sediments at Sites 549-551, however, record two different periods of enrichment in organic material, wherein marine organic matter was mixed with terrestrial components. The earlier period is represented only in the uppermost Albianmiddle Cenomanian section at the most seaward site, 550. Here, dark laminated marly chalks rich in organic matter occur rhythmically interbedded with light-colored, bioturbated marly chalks poor in organic matter, suggesting that bottom waters alternated between oxidizing and reducing conditions. A later period of enrichment in organic material is recorded in the upper Cenomanian-Turonian sections at Sites 549 and 551 as a single, laminated black mudstone interval containing biogenic siliceous debris. It was deposited along the margin during a time of oxygen deficiency associated with upwelling-induced intensification and expansion of the mid-water oxygen-minimum layer. In both the earlier and later events, variations in productivity appear to have been the immediate cause of oxygen depletion in the bottom waters.
Resumo:
There are substantial differences in the character of organic matter contained in the Pleistocene and Cretaceous sedimentary sequences of DSDP Site 535. The argillaceous Pleistocene section contains type III, gas-prone organic matter whereas the calcareous Cretaceous section is dominated by type II, oil-prone organic matter. A more detailed investigation of the Cretaceous section reveals that the finely laminated limestones of Valanginian to Barremian age are of good to excellent source quality. The indigenous organic matter contained within this organically rich section is thermally immature, not having undergone sufficient thermal diagenesis for the generation and expulsion of hydrocarbons. Within this stratigraphic section, however, staining by mature hydrocarbons was detected. These stains are associated with a fractured interval. These fractures may in turn represent potential migration pathways.
Resumo:
Pyrolysis assay, bitumen analysis, and elemental analysis of kerogen were used to characterize the organic matter of selected core samples from Hole 534A (Leg 76) and Hole 391C (Leg 44) on the Blake-Bahama Plateau. The organic matter throughout the stratigraphic section appears to be principally of a terrestrial origin. The data from several isolated horizons in the Hatteras and Blake-Bahama Formations imply the presence of significant quantities of autochthonous marine organic matter. However, these horizons appear so limited that they cannot be considered potential liquid hydrocarbon source rocks. All the analyzed samples are immature and have not evolved sufficiently to enter into the main stage of hydrocarbon generation. The temporal and spatial restrictions of strata rich in marine organic matter suggest that they do not represent major expansions and contractions of anoxic bottom-water masses, but represent limited occurrences of anoxic conditions.
Resumo:
The average total organic carbon (TOC) content obtained after Rock-Eval/TOC analysis of 156 sediment samples from the eight sites cored during Leg 135 is 0.05%. Hence, the TOC content of Leg 135 sediments is extremely low. The organic matter that is present in these samples is probably mostly reworked and oxidized material. Ten sediment samples were selected for extraction and analysis by gas chromatography and gas chromatography-mass spectrometry. Very low amounts of extractable hydrocarbons were obtained and some aspects of the biomarker distributions suggest that these hydrocarbons are not representative of the organic matter indigenous to the samples. A sample of an oil seep from Pili, Tongatapu was also analyzed. The seep is a biodegraded, mature oil that shows many characteristics in common with previously published analyses of oil seeps from Tongatapu. Biomarker evidence indicates that its source is a mature, marine carbonate of probable Late Cretaceous-Early Tertiary age. The source rock responsible for the Tongatapu oil seeps remains unknown.
Resumo:
Twenty-six core samples from Leg 64, Holes 474, 474A, 477, 478, 479, and 481A in the Gulf of California, were provided by the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Advisory Panel on Organic Geochemistry for analysis. The high heat flow characteristic of the basin provides an opportunity to study the effect of temperature on the diagenesis of organic matter. The contents and carbon isotope compositions of the organic matter and bitumen fractions of different polarity, isoprenoid and normal alkane distributions, and the nature of tetrapyrrole pigments were studied. Relative contents of hydrocarbons and bitumens depend on the thermal history of the deposits. Among other criteria, the nature and content of tetrapyrrole pigments appear to be most sensitive to thermal stress. Whereas only chlorins are present in the immature samples, porphyrins, including VO-porphyrins, appear in the thermally altered deposits, despite the shallow burial depth. Alkane distributions in thermally changed samples are characterized by low values of phytane to 2-C18 ratios and an odd/even carbon preference index close to unity. The thermally altered samples show unusual carbon isotope distributions of the bitumen fractions. The data also provide some evidence concerning the source of the organic matter and the degree of diagenesis.
Resumo:
As part of a continuing program of organic-geochemistry studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal-alteration indices of organic matter in samples collected from the landward wall of the Japan Trench on Legs 56 and 57. The samples were canned aboard ship, enabling us to measure also their gas contents. In addition, we analyzed the heavy C15+ hydrocarbons, NSO compounds, and asphaltenes extracted from selected samples. Our samples form a transect down the trench wall, from Holes 438 and 438A (water depth 1558 m), through Holes 435 and 435A (water depth 3401 m), and 440 (water depth 4507 m), to Holes 434 and 434B (water depth 5986 m). The trench wall is the continental slope of Japan. Its sediments are Cenozoic hemipelagic diatomaceous muds that were deposited where they are found or have slumped from farther up the slope. Their terrigenous components probably were deposited from near-bottom nepheloid layers transported by bottom currents or in low density flows (Arthur et al., 1978). Our objective was to find out what types of organic matter exist in the sediment and to estimate their potential for generation of hydrocarbons.