982 resultados para artificial soil compaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Right development of ROOT SYSTEMS is essential to ensure seedling survival in the initial stages of natural regeneration processes. Soil compaction determines this development both because of its influence on soil Tª & moisture dynamics and for its direct effect on soil mechanical impedance to root growth. All this effects can be assessed as a whole through soil penetration resistance (Soil Strength) measurements. SOIL STRENGTH has been usually evaluated in forest research in connection with severe disturbances derived from heavy machinery works during forest operations. Nevertheless, undisturbed soils are also expected to show different levels of compaction for root development. Organic matter modifies soil structure and so on porosity, compaction and resultant soil resistance to penetration. Its concentration in surface layers is rather related to vegetation cover composition and density. So within forest stands, a relationship is expected to be found between VEGETATION COVER density and compaction measured as resistance to penetration (soil strength)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water availability for flood irrigated rice (Oryza sativa L.) is decreasing worldwide. Therefore, developing technologies to allow growing rice in aerobic condition, such as a no-tillage system (NTS) can contribute to produce upland rice grains without yield losses and also in saving more water. The objective of this study was to determine the effect of soil management, seed treatment and compaction on the sowing furrow on grain yield of upland rice genotypes. We made two trials, one in an NTS and another using conventional tillage, CT (one plowing and two diskings). The field experiments were performed in the Central Region of Brazil in Cerrado soils. For each trial, the experimental design was a randomized block design in a factorial scheme, with three replications. The treatments consisted of a combination of 10 genotypes with 2 compaction pressures on the sowing furrow (25 kPa and 126kPa) and 2 types of seed treatment (with and without pesticide). Under CT, the seed treatment did not contribute to increase upland rice grain yields. However, under NTS the grain yield of some genotypes [BRS Esmeralda (from 723 to 1,766 kg ha-1), BRS Pepita (from 930 to 1,874 kg ha-1), AB072044 (from 523 to 1,579 kg ha-1), and AB072085 (from 632 to 1,636 kg ha-1) at 25 kPA soil compaction pressure, and Sertaneja (from 994 to 2,167 kg ha-1), BRS Pepita (from 1,161 to 2,100 kg ha-1), and AB072085 (from 958 to 2,213 kg ha-1), at 126 kPA soil compaction pressure] increased with the use of this practice. At CT the higher soil compaction pressure on the sowing furrow (from 25 kPa to 126 kPa) increased rice grain yield only when it was used seed treatment and the genotypes Serra Dourada (from 1,239 to 2,178 kg ha-1), Sertaneja (from 1,510 to 2,379 kg ha-1), and Cambará (from 1,877 to 2,831 kg ha-1). On the other hand, under NTS, increasing soil compaction pressure on the sowing furrow allowed for an increased rice grain yield of Serra Dourada (from 1,553 to 2,347 kg ha-1), Esmeralda (from 723 to 1,643 kg ha-1), AB072044 (from 523 to 2,040 kg ha-1), and Cambará (from 1,243 to 2,032 kg ha-1) without seed treatment and Sertaneja (from 1,385 to 2,167 kg ha-1) and AB072044 (from 1,579 to 2,356 kg ha-1) with seed treatment. In CT the most productive genotypes were AB062008 (2,714 kg ha-1) and BRSMG Caravera (2,479 kg ha-1), while at NTS were the genotypes: BRSGO Serra Dourada (2,118 kg ha-1), AB072047 (1,888 kg ha-1), AB062008 (1,823 kg ha-1), BRSMG Caravera (1,737 kg ha-1), Cambará (1,716 kg ha-1), AB072044 (1,625 kg ha-1), BRS Esmeralda (1,604 kg ha-1), and BRS Pepita (1,516 kg ha-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the best combination of management options for upland rice production: seed treatment, N management and soil compaction in zero and conventional tillage methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudou-se o efeito de vários níveis de compactação na densidade do solo, porosidade total e resistência à penetração, objetivando determinar o nível que impede o desenvolvimento das raízes de plantas de soja. O trabalho foi realizado em casa de vegetação, com amostras deformadas do horizonte superficial de uma terra roxa estruturada e de um latossolo roxo, controlando os níveis de compactação e o teor de água. A influência da compactação no desenvolvimento das raízes foi avaliada um mês após a germinação. Os valores de densidade do solo, para um mesmo nível de compactação, foram maiores para a terra roxa estruturada. O teor de água ótimo para a compactação foi de 21,0% para a terra roxa estruturada e de 29,8 para o latossolo roxo. A compactação artificial do solo acarretou aumento da resistência à penetração e diminuição da porosidade total. A elevação da sua densidade de 0,90 para 1,30 kg/m³ para a terra roxa estruturada, e de 0,90 para 1,23 kg/m³ para o latossolo roxo, promoveu, respectivamente, diminuição de 39 e de 41% na massa seca das raízes. O desenvolvimento das raízes das plantas ficou impedido quando a densidade do solo atingiu valores de 1,30 e 1,23 kg/m³, respectivamente, para a terra roxa estruturada e o latossolo roxo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compactação é um dos fatores mais agravantes para a qualidade do solo, porém o seu efeito na comunidade e atividade enzimática microbiana não tem sido suficientemente estudado. Seis níveis de compactação foram obtidos pela passagem de tratores com diferentes pesos em um Latossolo Vermelho, e a densidade final foi medida. Amostras de solo foram coletadas nas profundidades de 0-10 e 10-20 cm, após a colheita do milho. O efeito da compactação foi evidente em todos os parâmetros estudados, mas nem sempre foi significativo. A contagem das bactérias totais reduziu significativamente em 22-30 %, e a das nitrificantes, em 38-41 %, no solo com maior densidade em relação ao controle. Contudo, a população de fungos aumentou de 55 a 86 %, e a das bactérias desnitrificantes, de 49 a 53 %. A atividade da desidrogenase diminuiu de 20 a 34 %; a da urease, de 44 a 46 %; e a da fosfatase, de 26 a 28 %. O conteúdo de matéria orgânica e o pH do solo diminuíram na camada 0-0,10 em relação à de 0,10-0,20 m e influíram possivelmente na redução das contagens microbianas exceto das bactérias desnitrificantes, e na atividade das enzimas, menos a da urease. Esses resultados indicam que a compactação do solo teve influência na comunidade de microrganismos aeróbios e na sua atividade. Esse efeito pode alterar a ciclagem de nutrientes e diminuir a produção da planta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obtaining ecotoxicological data on pesticides in tropical regions is imperative for performing more realistic risk analysis, and avoidance tests have been proposed as a useful, fast and cost-effective tool. Therefore, the present study aimed to evaluate the avoidance behavior of Eisenia andrei to a formulated product, Vertimec(A (R)) 18 EC (a.i abamectin), in tests performed on a reference tropical artificial soil (TAS), to derive ecotoxicological data on tropical conditions, and a natural soil (NS), simulating crop field conditions. In TAS tests an adaptation of the substrate recommended by OECD and ISO protocols was used, with residues of coconut fiber as a source of organic matter. Concentrations of the pesticide on TAS test ranged from 0 to 7 mg abamectin/kg (dry weight-d.w.). In NS tests, earthworms were exposed to samples of soils sprayed in situ with: 0.9 L of Vertimec(A (R)) 18 EC/ha (RD); twice as much this dosage (2RD); and distilled water (Control), respectively, and to 2RD: control dilutions (12.5, 25, 50, 75%). All tests were performed under 25 +/- A 2A degrees C, to simulate tropical conditions, and a 12hL:12hD photoperiod. The organisms avoided contaminated TAS for an EC50,48h = 3.918 mg/kg soil d.w., LOEC = 1.75 mg/kg soil d.w. and NOEC = 0.85 mg/kg soil d.w. No significant avoidance response occurred for any NS test. Abamectin concentrations in NS were rather lower than EC50, 48h and LOEC determined in TAS tests. The results obtained contribute to overcome a lack of ecotoxicological data on pesticides under tropical conditions, but more tests with different soil invertebrates are needed to improve pesticides risk analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the objectives of this study was to evaluate soil testing equipment based on its capability of measuring in-place stiffness or modulus values. As design criteria transition from empirical to mechanistic-empirical, soil test methods and equipment that measure properties such as stiffness and modulus and how they relate to Florida materials are needed. Requirements for the selected equipment are that they be portable, cost effective, reliable, a ccurate, and repeatable. A second objective is that the selected equipment measures soil properties without the use of nuclear materials.The current device used to measure soil compaction is the nuclear density gauge (NDG). Equipment evaluated in this research included lightweight deflectometers (LWD) from different manufacturers, a dynamic cone penetrometer (DCP), a GeoGauge, a Clegg impact soil tester (CIST), a Briaud compaction device (BCD), and a seismic pavement analyzer (SPA). Evaluations were conducted over ranges of measured densities and moistures.Testing (Phases I and II) was conducted in a test box and test pits. Phase III testing was conducted on materials found on five construction projects located in the Jacksonville, Florida, area. Phase I analyses determined that the GeoGauge had the lowest overall coefficient of variance (COV). In ascending order of COV were the accelerometer-type LWD, the geophone-type LWD, the DCP, the BCD, and the SPA which had the highest overall COV. As a result, the BCD and the SPA were excluded from Phase II testing.In Phase II, measurements obtained from the selected equipment were compared to the modulus values obtained by the static plate load test (PLT), the resilient modulus (MR) from laboratory testing, and the NDG measurements. To minimize soil and moisture content variability, the single spot testing sequence was developed. At each location, test results obtained from the portable equipment under evaluation were compared to the values from adjacent NDG, PLT, and laboratory MR measurements. Correlations were developed through statistical analysis. Target values were developed for various soils for verification on similar soils that were field tested in Phase III. The single spot testing sequence also was employed in Phase III, field testing performed on A-3 and A-2-4 embankments, limerock-stabilized subgrade, limerock base, and graded aggregate base found on Florida Department of Transportation construction projects. The Phase II and Phase III results provided potential trend information for future research—specifically, data collection for in-depth statistical analysis for correlations with the laboratory MR for specific soil types under specific moisture conditions. With the collection of enough data, stronger relationships could be expected between measurements from the portable equipment and the MR values. Based on the statistical analyses and the experience gained from extensive use of the equipment, the combination of the DCP and the LWD was selected for in-place soil testing for compaction control acceptance. Test methods and developmental specifications were written for the DCP and the LWD. The developmental specifications include target values for the compaction control of embankment, subgrade, and base materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Information on the effects of growing cotton (Gossypium hirsutum L.)-based crop rotations on soil quality of dryland Vertisols is sparse. The objective of this study was to quantify the effects of growing cereal and leguminous crops in rotation with dryland cotton on physical and chemical properties of a grey Vertisol near Warra, SE Queensland, Australia. The experimental treatments, selected after consultations with local cotton growers, were continuous cotton (T1), cotton-sorghum (Sorghum bicolor (L.) Moench.) (T2), cotton-wheat (Triticum aestivum L.) double cropped (T3), cotton-chickpea (Cicer arietinum L.) double cropped followed by wheat (T4) and cotton-wheat (T5). From 1993 to 1996 land preparation was by chisel ploughing to about 0.2 m followed by two to four cultivations with a Gyral tyne cultivator. Thereafter all crops were sown with zero tillage except for cultivation with a chisel plough to about 0.07-0.1 m after cotton picking to control heliothis moth pupae. Soil was sampled from 1996 to 2004 and physical (air-filled porosity of oven-dried soil, an indicator of soil compaction; plastic limit; linear shrinkage; dispersion index) and chemical (pH in 0.01 M CaCl2, organic carbon, exchangeable Ca, Mg, K and Na contents) properties measured. Crop rotation affected soil properties only with respect to exchangeable Na content and air-filled porosity. In the surface 0.15 m during 2000 and 2001 lowest air-filled porosity occurred with T1 (average of 34.6 m3/100 m3) and the highest with T3 (average of 38.9 m3/100 m3). Air-filled porosity decreased in the same depth between 1997 and 1998 from 45.0 to 36.1 m3/100 m3, presumably due to smearing and compaction caused by shallow cultivation in wet soil. In the subsoil, T1 and T2 frequently had lower air-filled porosity values in comparison with T3, T4 and T5, particularly during the early stages of the experiment, although values under T1 increased subsequently. In general, compaction was less under rotations which included a wheat crop (T3, T4, T5). For example, average air-filled porosity (in m3/100 m3) in the 0.15-0.30 m depth from 1996 to 1999 was 19.8 with both T1 and T2, and 21.2 with T3, 21.1 with T4 and 21.5 with T5. From 2000 to 2004, average air-filled porosity (in m3/100 m3) in the same depth was 21.3 with T1, 19.0 with T2, 19.8 with T3, 20.0 with T4 and 20.5 with T5. The rotation which included chickpea (T4) resulted in the lowest exchangeable Na content, although differences among rotations were small. Where only a cereal crop with a fibrous root system was sown in rotation with cotton (T2, T3, T5) linear shrinkage in the 0.45-0.60 m depth was lower than in rotations, which included tap-rooted crops such as chickpea (T4) or continuous cotton (T1). Dispersion index and organic carbon decreased, and plastic limit increased with time. Soil organic carbon stocks decreased at a rate of 1.2 Mg/ha/year. Lowest average cotton lint yield occurred with T2 (0.54 Mg/ha) and highest wheat yield with T3 (2.8 Mg/ha). Rotations which include a wheat crop are more likely to result in better soil structure and cotton lint yield than cotton-sorghum or continuous cotton.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we discuss the design of a manually operated soil compaction machine that is being used to manufacture stabilized soil blocks (SSB). A case study of manufacturing more than three million blocks in a housing project using manually operated machines is illustrated. The paper is focussed on the design, development, and evaluation of a manually operated soil compaction machine for the production of SSB. It also details the machine design philosophy, compaction characteristics of soils, employment generation potential of small-scale stabilized soil block productions systems, and embodied energy. Static compaction of partially saturated soils was performed to generate force-displacement curves in a confined compaction process were generated. Based on the soil compaction data engineering design aspects of a toggle press are illustrated. The results of time and motion study on block production operations using manual machines are discussed. Critical path network diagrams were used for small-scale SSB production systems. Such production systems generate employment at a very low capital cost.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)