910 resultados para articulated motion structure learning


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Distance and blended collaborative learning settings are usually characterized by different social structures defined in terms of groups' number, dimension, and composition; these structures are variable and can change within the same activity. This variability poses additional complexity to instructional designers, when they are trying to develop successful experiences from existing designs. This complexity is greatly associated with the fact that learning designs do not render explicit how social structures influenced the decisions of the original designer, and thus whether the social structures of the new setting could preclude the effectiveness of the reused design. This article proposes the usage of new representations (social structure representations, SSRs) able to support unskilled designers in reusing existing learning designs, through the explicit characterization of the social structures and constraints embedded either by the original designers or the reusing teachers, according to well-known principles of good collaborative learning practice. The article also describes an evaluation process that involved university professors, as well as the main findings derived from it. This process supported the initial assumptions about the effectiveness of SSRs, with significant evidence from both qualitative and qualitative data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Employing critical pedagogy and transformative theory as a theoretical framework, I examined a learning process associated with building capacity in community-based organizations (CBOs) through an investigation of the Institutional Capacity Building Program (ICBP) initiated by a Foundation. The study sought to: (a) examine the importance of institutional capacity building for individual and community development; (b) investigate elements of a process associated with a program and characteristics of a learning process for building capacity in CBOs; and (c) analyze the Foundation’s approach to synthesizing, systematizing, and sharing learning. The study used a narrative research design that included 3 one-on-one, hour-long interviews with 2 women having unique vantage points in ICBP: one is a program facilitator working at the Foundation and the other runs a CBO supported by the Foundation. The interviews’ semistructured questions allowed interviewees to share stories regarding their experience with the learning process of ICB and enabled themes to emerge from their day-to-day experience. Through the analysis of this learning process for institutional capacity building, a few lessons can be drawn from the experience of the Foundation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The flexibility of the robot is the key to its success as a viable aid to production. Flexibility of a robot can be explained in two directions. The first is to increase the physical generality of the robot such that it can be easily reconfigured to handle a wide variety of tasks. The second direction is to increase the ability of the robot to interact with its environment such that tasks can still be successfully completed in the presence of uncertainties. The use of articulated hands are capable of adapting to a wide variety of grasp shapes, hence reducing the need for special tooling. The availability of low mass, high bandwidth points close to the manipulated object also offers significant improvements I the control of fine motions. This thesis provides a framework for using articulated hands to perform local manipulation of objects. N particular, it addresses the issues in effecting compliant motions of objects in Cartesian space. The Stanford/JPL hand is used as an example to illustrate a number of concepts. The examples provide a unified methodology for controlling articulated hands grasping with point contacts. We also present a high-level hand programming system based on the methodologies developed in this thesis. Compliant motion of grasped objects and dexterous manipulations can be easily described in the LISP-based hand programming language.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a complete solution for creating accurate 3D textured models from monocular video sequences. The methods are developed within the framework of sequential structure from motion, where a 3D model of the environment is maintained and updated as new visual information becomes available. The camera position is recovered by directly associating the 3D scene model with local image observations. Compared to standard structure from motion techniques, this approach decreases the error accumulation while increasing the robustness to scene occlusions and feature association failures. The obtained 3D information is used to generate high quality, composite visual maps of the scene (mosaics). The visual maps are used to create texture-mapped, realistic views of the scene

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role is to provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an improved Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). The hashtable structure of LHMEA is improved compared to the original TPA and LHMEA. The evaluation of the algorithm considers the three important metrics being processing time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Learning to talk about motion in a second language is very difficult because it involves restructuring deeply entrenched patterns from the first language (Slobin 1996). In this paper we argue that statistical learning (Saffran et al. 1997) can explain why L2 learners are only partially successful in restructuring their second language grammars. We explore to what extent L2 learners make use of two mechanisms of statistical learning, entrenchment and pre-emption (Boyd and Goldberg 2011) to acquire target-like expressions of motion and retreat from overgeneralisation in this domain. Paying attention to the frequency of existing patterns in the input can help learners to adjust the frequency with which they use path and manner verbs in French but is insufficient to acquire the boundary crossing constraint (Slobin and Hoiting 1994) and learn what not to say. We also look at the role of language proficiency and exposure to French in explaining the findings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Visual Odometry is the process that estimates camera position and orientation based solely on images and in features (projections of visual landmarks present in the scene) extraced from them. With the increasing advance of Computer Vision algorithms and computer processing power, the subarea known as Structure from Motion (SFM) started to supply mathematical tools composing localization systems for robotics and Augmented Reality applications, in contrast with its initial purpose of being used in inherently offline solutions aiming 3D reconstruction and image based modelling. In that way, this work proposes a pipeline to obtain relative position featuring a previously calibrated camera as positional sensor and based entirely on models and algorithms from SFM. Techniques usually applied in camera localization systems such as Kalman filters and particle filters are not used, making unnecessary additional information like probabilistic models for camera state transition. Experiments assessing both 3D reconstruction quality and camera position estimated by the system were performed, in which image sequences captured in reallistic scenarios were processed and compared to localization data gathered from a mobile robotic platform

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The wide use of e-technologies represents a great opportunity for underserved segments of the population, especially with the aim of reintegrating excluded individuals back into society through education. This is particularly true for people with different types of disabilities who may have difficulties while attending traditional on-site learning programs that are typically based on printed learning resources. The creation and provision of accessible e-learning contents may therefore become a key factor in enabling people with different access needs to enjoy quality learning experiences and services. Another e-learning challenge is represented by m-learning (which stands for mobile learning), which is emerging as a consequence of mobile terminals diffusion and provides the opportunity to browse didactical materials everywhere, outside places that are traditionally devoted to education. Both such situations share the need to access materials in limited conditions and collide with the growing use of rich media in didactical contents, which are designed to be enjoyed without any restriction. Nowadays, Web-based teaching makes great use of multimedia technologies, ranging from Flash animations to prerecorded video-lectures. Rich media in e-learning can offer significant potential in enhancing the learning environment, through helping to increase access to education, enhance the learning experience and support multiple learning styles. Moreover, they can often be used to improve the structure of Web-based courses. These highly variegated and structured contents may significantly improve the quality and the effectiveness of educational activities for learners. For example, rich media contents allow us to describe complex concepts and process flows. Audio and video elements may be utilized to add a “human touch” to distance-learning courses. Finally, real lectures may be recorded and distributed to integrate or enrich on line materials. A confirmation of the advantages of these approaches can be seen in the exponential growth of video-lecture availability on the net, due to the ease of recording and delivering activities which take place in a traditional classroom. Furthermore, the wide use of assistive technologies for learners with disabilities injects new life into e-learning systems. E-learning allows distance and flexible educational activities, thus helping disabled learners to access resources which would otherwise present significant barriers for them. For instance, students with visual impairments have difficulties in reading traditional visual materials, deaf learners have trouble in following traditional (spoken) lectures, people with motion disabilities have problems in attending on-site programs. As already mentioned, the use of wireless technologies and pervasive computing may really enhance the educational learner experience by offering mobile e-learning services that can be accessed by handheld devices. This new paradigm of educational content distribution maximizes the benefits for learners since it enables users to overcome constraints imposed by the surrounding environment. While certainly helpful for users without disabilities, we believe that the use of newmobile technologies may also become a fundamental tool for impaired learners, since it frees them from sitting in front of a PC. In this way, educational activities can be enjoyed by all the users, without hindrance, thus increasing the social inclusion of non-typical learners. While the provision of fully accessible and portable video-lectures may be extremely useful for students, it is widely recognized that structuring and managing rich media contents for mobile learning services are complex and expensive tasks. Indeed, major difficulties originate from the basic need to provide a textual equivalent for each media resource composing a rich media Learning Object (LO). Moreover, tests need to be carried out to establish whether a given LO is fully accessible to all kinds of learners. Unfortunately, both these tasks are truly time-consuming processes, depending on the type of contents the teacher is writing and on the authoring tool he/she is using. Due to these difficulties, online LOs are often distributed as partially accessible or totally inaccessible content. Bearing this in mind, this thesis aims to discuss the key issues of a system we have developed to deliver accessible, customized or nomadic learning experiences to learners with different access needs and skills. To reduce the risk of excluding users with particular access capabilities, our system exploits Learning Objects (LOs) which are dynamically adapted and transcoded based on the specific needs of non-typical users and on the barriers that they can encounter in the environment. The basic idea is to dynamically adapt contents, by selecting them from a set of media resources packaged in SCORM-compliant LOs and stored in a self-adapting format. The system schedules and orchestrates a set of transcoding processes based on specific learner needs, so as to produce a customized LO that can be fully enjoyed by any (impaired or mobile) student.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.