279 resultados para arthropod


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Providing supplementary food for wild birds is a globally popular past-time; almost half of the households in many developed countries participate and billions of US dollars are spent annually. Although the direct influence of this additional resource on bird survivorship and fecundity has been studied, there is little understanding of the wider ecological consequences of this massive perturbation to (what are usually) urban ecosystems. We investigated the possible effects of wild bird feeding on the size and survivorship of colonies of a widespread arthropod prey species of many small passerine birds, the pea aphid [Acyrthosiphon pisum (Harris); Hemiptera: Aphididae], in suburban gardens in a large town in southern England. We found significantly fewer aphids and shorter colony survival times in colonies exposed to avian predation compared to protected controls in gardens with a bird feeder but no such differences between exposed and protected colonies in gardens that did not feed birds. Our work therefore suggests that supplementary feeding of wild birds in gardens may indirectly influence population sizes and survivorship of their arthropod prey and highlights the need for further research into the potential effects on other species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substantial new DNA data were obtained by sequencing the mitochondrial genomes of four crustacean species, resulting in the discovery of a novel gene order in freshwater crayfish. Investigation of evolutionary relationships using mitochondrial genomes challenged established theories of crustacean evolution and diversification in relation to the other major Arthropod groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orb-web spiders are polyphagous animals in which the web plays a very important role in the capture of preys; oily droplets usually cover the capture-web of the spider Nephila clavipes and seem to be of great importance for prey capture. The knowledge of the chemical composition of these droplets is necessary to understand the function of this adhesive material in web mechanics and prey capture. A novel subclass of spider toxins, tetrahydro-beta-carboline, was identified among the weaponry of compounds present inside of oily droplets. This type of alkaloid is not common among the natural compounds of spider toxins. Apparently, when the prey arthropods get caught by the spider web, their bodies are covered with many adhesive oily droplets, which disrupt delivering the tetrahydro-beta-carboline to the direct contact with the prey integument. Toxicity assays demonstrated a potent lethal effect of the alkaloid toxin to the spider preys; topical applications of the teirahydro-beta-carboline at first caused clear signs of neurotoxicity, followed by the death of preys. The structure of the major component, a tetrahydro-beta-carboline, among the alkaloid toxins was elucidated by means of UV spectrophotometry, ESI mass spectrometry, H-1-NMR spectroscopy, and high-resolution mass spectrometry. The structure of the natural toxin was determined as 1-(2-guanidinoethyl)-1,2,3,4-tetrahydro-6-hydroxymethyl)-beta-carboline; the investigation of the pharmacological properties and neurotoxic actions of this compound may be used in the future as reference for the development of new drugs to be applied at level of pest control in agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of ecological restoration techniques can be monitored through biological indicators of soil quality such as the leaf litter arthropod fauna. This study aimed to determine the immediate effect of brushwood transposition transferred from an area of native vegetation to a disturbed area, on the leaf litter arthropod fauna in a degraded cerrado area. The arthropod fauna of four areas was compared: a degraded area with signal grass, two experimental brushwood transposition areas, with and without castor oil plants, and an area of native cerrado. In total, 7,660 individuals belonging to 23 taxa were sampled. Acari and Collembola were the most abundant taxa in all studied areas, followed by Coleoptera, Diptera, Hemiptera, Hymenoptera, and Symphyla. The brushwood transposition area without castor oil plants had the lowest abundance and dominance and the highest diversity of all areas, providing evidence of changes in the soil community. Conversely, the results showed that the presence of castor oil plants hampered early succession, negatively affecting ecological restoration in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buildings structures and surfaces are explicitly being used to grow plants, and these "urban plantings" are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant "ecological values" by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study alpha and beta diversity patterns of five leaf litter arthropod groups (ants, predatory ants, oribatid mites, spiders and other arachnids) were described and compared in 39 sampling patches of a transformed landscape in southwestern Colombia, that represented five vegetation types: secondary forest, riparian forest, giant bamboo forest, pasture and sugarcane crop. It was also assessed whether some taxa could be used as diversity surrogates. A total of 6,765 individuals grouped in 290 morphospecies were collected. Species richness in all groups was lower in highly transformed vegetation types (pasture, sugarcane crop) than in native ones (forests). In contrast, there were no clear tendencies of beta diversity among vegetation types. Considering sampling patches, 0.1-42% of the variation in alpha diversity of one taxonomic group could be explained from the alpha diversity of another, and 0.2-33% of the variation of beta diversity of a given taxon was explained by that in other groups. Contrary to recent findings, we concluded that patterns of alpha diversity are more congruent than patterns of beta diversity. This fact could be attributed to a sampling effect that promotes congruence in alpha diversity and to a lack of a clear regional ecological gradient that could promote congruent patterns of beta diversity. We did not find evidence for an ideal diversity surrogate although diversity patterns of predatory ants had the greatest congruencies. These results support earlier multi-taxon evaluations in that conservation planning should not be based on only one leaf litter arthropod group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In einem Ökosystem beeinflussen sich Tiere gegenseitig in erster Linie durch direkte Interaktionen. Ihr Verhalten kann aber auch indirekt durch chemotaktile Stoffe die andere Tiere in der Umwelt hinterlassen beeinflusst werden. Vergleichbar zu direkten Interaktionen können indirekt ausgelöste Verhaltensänderungen einen starken Einfluss auf Populationsdynamiken und Gemeinschaftsstrukturen eines Ökosystems haben. Obwohl das daran gehegte Interesse der Ökologen in den letzten Jahrzenten stark gestiegen ist, fehlen immer noch Studien, welche über mehrere Arten hinweg versuchen die übergreifende Relevanz von chemotaktilen Stoffen herauszufinden. Im Rahmen meiner Doktorarbeit untersuchte ich daher wie sich mehrere mitteleuropäische Arthropodenarten, abhängig von deren interspezifischen Räuber-Beute- und Konkurrenzbeziehungen, mittels chemotaktiler Stoffe beeinflussen können. Mithilfe unterschiedlicher Verhaltensversuche konnte ich empirisch nachweisen, dass verschiedene Arthropoden chemotaktile Stoffe zu ihrem eigenen Vorteil nutzen können. Außerdem zeigen meine Ergebnisse, dass die Verhaltensänderungen artspezifisch und abhängig von den jeweiligen Lebenszyklen und den damit verbundenen Eigenschaften (z.B. Körpergröße, Häufigkeit oder Rangordnung) der beteiligten Arten sind. Ich vermute daher, dass Arthropoden chemotaktile Stoffe ihrer Gegenspieler wahrnehmen und interpretieren können. Eine Verhaltensänderung scheint jedoch nur dann statt zu finden wenn ein Nichtreagieren starke Fitnesskosten mit sich führen würde. Zusammenfassend zeigen die Ergebnisse meiner Doktorarbeit, wie wichtig es ist, die Bedeutung von chemotaktilen Stoffen innerhalb vieler Arten einer Gemeinschaft zu testen, um die den Verhaltensänderungen zugrundeliegenden Ursachen identifizieren zu können. Dies wiederum stellt die Grundlage, um die ökologische Relevanz von chemotaktilen Stoffen und deren mögliche Effekte auf Ökosystemfunktionen besser zu verstehen.