905 resultados para aramide, benzamide, rod-coil copolymer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der erste Teil der vorliegenden Dissertation beschäftigt sich mit der Eignung des ?,?-dithiolfunktionalisierten Poly(para-phenylenethinylen)s (PPE) als sogenannter „molekularer Draht“ für die molekulare Elektronik. Über die HECK-CASSAR-SONOGASHIRA-Reaktion wurden vollständig endfunktionalisierte, defektfreie Polymere mit durchschnittlichen Polymerisationsgraden von bis zu 45 Repetitionseinheiten synthetisiert. Die starke Aggregationsneigung der PPE, die die Anordnung der Polymerketten zwischen den Goldelektroden unterstützen soll, wurde mittels Rasterkraft- und Rastertunnelmikroskopie untersucht. Für die Untersuchungen zur Dotierbarkeit wurden ESR-, ENDOR-, UPS- und XPS-Messungen durchgeführt. Es konnte gezeigt werden, dass sich das PPE reduzieren lässt.Im zweiten Teil der Arbeit wurden die PPE zur Synthese von Stäbchen-Knäuel-Diblockcopolymeren eingesetzt. Die Darstellung erfolgte nach der 'grafting onto'-Methode, indem monocarboxyl-endfunktionalisiertes PPE mit flexiblen monohydroxyl-endfunktionalisiertem Polyethylenglykol, Polydimethylsulfoxid bzw. Polytetrahydrofuran verestert wurde. Den Nachweis der Diblockcopolymerbildung erbrachten die 1H?NMR-Spektroskopie und die für Diblockcopolymere noch wenig angewandte MALDI-TOF-Massenspektrometrie. Mittels Rasterkraftmikroskopie und Computersimulationen zur Molekularmechanik und -dynamik wurden die Aggregationseigenschaften der Diblockcopolymere untersucht.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated systematically the morphology of thin films spin-coated from solutions of a semicrystalline diblock copolymer, poly(L-lactic acid)-block-polystyrene (PLLA-b-PS), in solvents with varying selectivity. In neutral solvents (chloroform and tetrahydrofuran (THF)), a spinodal-like pattern was obtained and the pattern boundary was sharpened by diluting the solution. Meanwhile, loose spherical associates, together with larger aggregates composed of these associates by unimer bridges, formed partly due to crystallization of the PLLA blocks in relatively concentrated solutions. In slightly PS-selective solvent (e.g., benzene), both loose and compact spherical micelles were obtained, depending on the polymer concentration, coexisting with unimers. When enhancing the selectivity with mixed solvents, for example, mixing the neutral solvent and the slightly selective solvent with a highly PS-selective solvent, CS2, loose assemblies (nanorods in CS2/THF mixtures and polydisperse aggregates in CS2/benzene mixtures) and well-developed lamellar micelles were obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aggregation of rod-flexible ABA and BAB triblock (A was rod block and repulsive with block B) copolymers in a thin film was studied as a function of varying the rigidity (eta) and the length of the rod block by Monte Carlo simulation. The rigidity of block A was defined as eta = R-c/R-max in this study. R-c, was the end-to-end distance below which the conformation of the block was not allowed, whereas R-max, was the longest end-to-end distance that the block could be. If eta = 0 the block was flexible, whereas if eta = 1 the block was a straight rod. The simulation results showed that the ABA triblock copolymer film were likely to form lamella structure with increasing the rigidity (eta) of block A. The lamellas were parallel each other and perpendicular to the film surface. However, the aggregation of BAB triblock copolymers tended to change from lamella to cylinder structure with increasing the rigidity (eta) of block A. Typical lamella and cylinder co-exist structure was obtained at eta = 0.504 for the BAB copolymer film. On the other hand, the simulation results indicated that the film changed from disorder to order, then to disorder structure with increasing the relative length of B block for both ABA and BAB copolymer films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work focused on the synthesis of novel monomers for the design of a series of oligo(p-benzamide)s following two approaches: iterative solution synthesis and automated solid phase protocols. These approaches present a useful method to the sequence-controlled synthesis of side-chain and main-chain functionalized oligomers for the preparation of an immense variety of nanoscaffolds. The challenge in the synthesis of such materials was their modification, while maintaining the characteristic properties (physical-chemical properties, shape persistence and anisotropy). The strategy for the preparation of predictable superstructures was devote to the selective control of noncovalent interactions, monodispersity and monomer sequence. In addition to this, the structure-properties correlation of the prepared rod-like soluble materials was pointed. The first approach involved the solution-based aramide synthesis via introduction of 2,4-dimethoxybenzyl N-amide protective group via an iterative synthetic strategy The second approach focused on the implementation of the salicylic acid scaffold to introduce substituents on the aromatic backbone for the stabilization of the OPBA-rotamers. The prepared oligomers were analyzed regarding their solubility and aggregation properties by systematically changing the degree of rotational freedom of the amide bonds, side chain polarity, monomer sequence and degree of oligomerization. The syntheses were performed on a modified commercial peptide synthesizer using a combination of fluorenylmethoxycarbonyl (Fmoc) and aramide chemistry. The automated synthesis allowed the preparation of aramides with potential applications as nanoscaffolds in supramolecular chemistry, e.g. comb-like-

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The roles of myosin during muscle contraction are well studied, but how different domains of this protein are involved in myofibril assembly in vivo is far less understood. The indirect flight muscles (IFMs) of Drosophila melanogaster provide a good model for understanding muscle development and function in vivo. We show that two missense mutations in the rod region of the myosin heavy-chain gene, Mhc, give rise to IFM defects and abnormal myofibrils. These defects likely result from thick filament abnormalities that manifest during early sarcomere development or later by hypercontraction. The thick filament defects are accompanied by marked reduction in accumulation of flightin, a myosin binding protein, and its phosphorylated forms, which are required to stabilise thick filaments. We investigated with purified rod fragments whether the mutations affect the coiled-coil structure, rod aggregate size or rod stability. No significant changes in these parameters were detected, except for rod thermodynamic stability in one mutation. Molecular dynamics simulations suggest that these mutations may produce localised rod instabilities. We conclude that the aberrant myofibrils are a result of thick filament defects, but that these in vivo effects cannot be detected in vitro using the biophysical techniques employed. The in vivo investigation of these mutant phenotypes in IFM development and function provides a useful platform for studying myosin rod and thick filament formation generically, with application to the aetiology of human myosin rod myopathies. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the effect of Shear flow on the formation of rill.-shaped ABA triblock copolymer (P4VP(43)-b-PS260-b-P4VP(43)) micelles. The results reveal that Shear flow Plays an important role in the formation of the rings Both ring size and its, distribution are found to be dependent sensitively on the stirring rate. Sizable rings are more likely to be formed at moderate stirring rate, Interestingly, the ring formation mechanism is also dependent oil the Shear flow. Copolymers are likely to form rings via end-to-end cylinder connection at low stirring rates, whereas they tend to form rings via the pathway of the rod-sphere-vesicle-ring it high stirring rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the films and powder of polymers containing conductive oligomer are usually obtained from solution, the choice of better solvents for the regular arrangement of oligomers is very important for the higher conductivity. Because of the poor solubility of the oligomers, it is difficult to study the arrangement directly in most common solvents, so, we synthesized a triblock copolymer, mPEG2k-aniline pentamer-mPEG2k, as the model to investigate the arrangement-solvent relationship. For the poor solubility of the AP block in common solvents, the copolymer self-assembled into spheric micelles in toluene and into lamellar crystals in water and THF. The crystallinity (X-c) and crystallization temperature (T-c) values of mPEG blocks in powders prepared from different solvents differed obviously, which may be the effect of different self-assembled structures. From the two-phase model of one-dimensional electron density correlation function of SAXS, the long period of copolymer prepared from THF was presumably equal to the long period of pure mPEG plus the chain length of AP, which demonstrates that the AP blocks arrange regularly in the noncrystalline regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel wholly aromatic diamine, 2,2 '-bis(3-sulfobenzoyl)benzidine (2,2 '-BSBB), was successfully prepared by the reaction of 2,2 '-dibenzoylbenzidine (2,2 '-DBB) with fuming sulfuric acid. Copolymerization of 1,4,5,8-naphathlenetetracarboxylic dianhydride with 2,2 '-BSBB and 2,2 '-DBB generated a series of rigid-rod sulfonated polyimides. The synthesized copolymers with the -SO3H group on the side chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. They displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. The proton conductivities of copolymer membranes increased with increasing IEC and temperature, reaching value above 1.25 x 10(-1) S/cm at 20 degrees C, which is higher than that of Nafion (R) 117 at the same measurement condition. They displayed reasonably high proton conductivity due to the higher acidity of benzoyl sulfonic acid group, the larger interchain spacing, which is available for water to occupy, taking their lower water uptake (WU) into account. Consequently, these materials proved to be promising as proton exchange membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied, both experimentally and theoretically, the aggregation morphology of the ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property. Experimental results showed that the micellar morphology changed from spheres to rods and then to vesicles by changing the common solvent from N-N-dimethylformamide (DMF) to dioxane and then to tetrahydrofuran (THF). These controllable aggregates were also obtained by Monte Carlo simulation. The simulative results showed that the solvent property is a key factor that determines the copolymer aggregation morphology. The morphology changed from spheres to rods and then to vesicles by increasing the solvent solubility, corresponding to the change of stretched of the copolymer chains in the micellar cores. This result is in good agreement with the experimental one. Moreover, the simulative results revealed that the end-to-end distant of the ABA triblock copolymer in the vesicle was larger than that in the spheres and rods, indicating that the copolymer chains were more stretched in vesicles than in the spheres and rods. Furthermore, we gave the distribution of the fraction of the chain number with the end-to-end distance. The results indicated that the amount of folded chains is almost the same as that of stretched chains in the vesicle. Although most chains were folded, stretched chains could be found in the rod and sphere micelles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the hole nucleation and growth induced by crystallization of thin crystalline-coil diblock copolymer films. Semicrystalline rodlike assemblies from neutral/selective binary solvent are used as seeds to nucleate crystallization at temperatures above the glass transition temperature (T-g) but below melting point (T-m). The crystallization of nanorods drives neighboring copolymer chains to diffuse into the growing nanorods. Depletion of copolymer chains yields hole nucleation and growth at the edge of the nanorods. Simultaneously, the polymer chains unassociated into the nanorods were oriented by induction from the free surface and the substrate, leading to limitation of the hole depth to the lamellar spacing, similar to20 nm. The holes, as well as the nanorods, grow as t(alpha), where t is the annealing time and a crossover in the exponent a. is found. The orientation and stretching of the copolymer chains by the surface and interface are believed to accelerate the crystallization, and in turn, the latter accelerates the growth rate of the holes. At T > T-m, the grains melt and the copolymer chains relax and flow into the first layer of the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the multiple morphologies and their transformation of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) in low-alkanol solvents. In order to improve the solubility of polystyrene block in alcohol solvents, the solution of block copolymer sample was treated at a higher temperature, and then the influence of rate of decreasing temperature on multiple morphologies (including spheres, rods, vesicles, porous vesicles, large compound vesicles, and large compound micelles) was observed. The transformation of spheres to rods, to tyre-shaped large compound micelles, and to sphere-shaped large compound micelles was also realized. The formation mechanisms of the multiple morphologies and their transformation are discussed briefly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ring- and rod-shaped P4VP-b-PS-b-P4VP ( PS, polystyrene; P4VP, poly( 4-vinylpyridine)) triblock copolymer aggregates are used as templates to synthesize ZnS nanocrystals. Herein, PVP serves as both a stabilizing agent and a structure- directing agent. The resulting ZnS nanocrystals could be aligned along the corona of the copolymer aggregates in near-perfect structures through control of both the molar ratio of Zn2+ to P4VP and the reaction time. The diameter of the as-synthesized ZnS layer on the surface of polymer template is approximate 2 - 3 nm. High-resolution transmission electron microscopy images reveal that the ZnS particles are single crystal in a zinc blende structure. This method provides a simple, reproducible route at room temperature to prepare assembled hybrid polymer - semiconductor nanocrystal nanocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the structure and shear flow behavior of a side-on liquid crystalline triblock copolymer, named PBA-b-PA444-b-PBA (PBA is poly(butyl acrylate) and PA444 is a poly(acrylate) with a nematic liquid crystal side-on mesogen), in the self-assembled lamellar phase and in the disordered phase. Simultaneous oscillatory shear and small-angle X-ray scattering experiments show that shearing PBA-b-PA444-b-PBA at high frequency and strain amplitudes leads to the alignment of the lamellae with normals perpendicular to the shear direction and to the velocity gradient direction, i.e., in the perpendicular orientation. The order-to-disorder transition temperature (T-ODT) is independent of the applied strain, in contrast to results reported in the literature for coil-coil diblock copolymers, which show an increase in T-ODT with shear rate. It is possible that in our system, T-ODT does not depend on the applied strain because the fluctuations are weaker than those present in coil-coil diblock copolymer systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signalling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.