791 resultados para approximation algorithm
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.
Resumo:
Abstract This thesis proposes a set of adaptive broadcast solutions and an adaptive data replication solution to support the deployment of P2P applications. P2P applications are an emerging type of distributed applications that are running on top of P2P networks. Typical P2P applications are video streaming, file sharing, etc. While interesting because they are fully distributed, P2P applications suffer from several deployment problems, due to the nature of the environment on which they perform. Indeed, defining an application on top of a P2P network often means defining an application where peers contribute resources in exchange for their ability to use the P2P application. For example, in P2P file sharing application, while the user is downloading some file, the P2P application is in parallel serving that file to other users. Such peers could have limited hardware resources, e.g., CPU, bandwidth and memory or the end-user could decide to limit the resources it dedicates to the P2P application a priori. In addition, a P2P network is typically emerged into an unreliable environment, where communication links and processes are subject to message losses and crashes, respectively. To support P2P applications, this thesis proposes a set of services that address some underlying constraints related to the nature of P2P networks. The proposed services include a set of adaptive broadcast solutions and an adaptive data replication solution that can be used as the basis of several P2P applications. Our data replication solution permits to increase availability and to reduce the communication overhead. The broadcast solutions aim, at providing a communication substrate encapsulating one of the key communication paradigms used by P2P applications: broadcast. Our broadcast solutions typically aim at offering reliability and scalability to some upper layer, be it an end-to-end P2P application or another system-level layer, such as a data replication layer. Our contributions are organized in a protocol stack made of three layers. In each layer, we propose a set of adaptive protocols that address specific constraints imposed by the environment. Each protocol is evaluated through a set of simulations. The adaptiveness aspect of our solutions relies on the fact that they take into account the constraints of the underlying system in a proactive manner. To model these constraints, we define an environment approximation algorithm allowing us to obtain an approximated view about the system or part of it. This approximated view includes the topology and the components reliability expressed in probabilistic terms. To adapt to the underlying system constraints, the proposed broadcast solutions route messages through tree overlays permitting to maximize the broadcast reliability. Here, the broadcast reliability is expressed as a function of the selected paths reliability and of the use of available resources. These resources are modeled in terms of quotas of messages translating the receiving and sending capacities at each node. To allow a deployment in a large-scale system, we take into account the available memory at processes by limiting the view they have to maintain about the system. Using this partial view, we propose three scalable broadcast algorithms, which are based on a propagation overlay that tends to the global tree overlay and adapts to some constraints of the underlying system. At a higher level, this thesis also proposes a data replication solution that is adaptive both in terms of replica placement and in terms of request routing. At the routing level, this solution takes the unreliability of the environment into account, in order to maximize reliable delivery of requests. At the replica placement level, the dynamically changing origin and frequency of read/write requests are analyzed, in order to define a set of replica that minimizes communication cost.
Resumo:
Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.
Resumo:
Complex networks have recently attracted a significant amount of research attention due to their ability to model real world phenomena. One important problem often encountered is to limit diffusive processes spread over the network, for example mitigating pandemic disease or computer virus spread. A number of problem formulations have been proposed that aim to solve such problems based on desired network characteristics, such as maintaining the largest network component after node removal. The recently formulated critical node detection problem aims to remove a small subset of vertices from the network such that the residual network has minimum pairwise connectivity. Unfortunately, the problem is NP-hard and also the number of constraints is cubic in number of vertices, making very large scale problems impossible to solve with traditional mathematical programming techniques. Even many approximation algorithm strategies such as dynamic programming, evolutionary algorithms, etc. all are unusable for networks that contain thousands to millions of vertices. A computationally efficient and simple approach is required in such circumstances, but none currently exist. In this thesis, such an algorithm is proposed. The methodology is based on a depth-first search traversal of the network, and a specially designed ranking function that considers information local to each vertex. Due to the variety of network structures, a number of characteristics must be taken into consideration and combined into a single rank that measures the utility of removing each vertex. Since removing a vertex in sequential fashion impacts the network structure, an efficient post-processing algorithm is also proposed to quickly re-rank vertices. Experiments on a range of common complex network models with varying number of vertices are considered, in addition to real world networks. The proposed algorithm, DFSH, is shown to be highly competitive and often outperforms existing strategies such as Google PageRank for minimizing pairwise connectivity.
Resumo:
When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MOP transition models from an expert or estimation from data, or non-stationary transition distributions arising from insufficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, the Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various solution algorithms exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose efficient dynamic programming methods to exploit its structure. Noting that the key computational bottleneck in the solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional ""flat"" dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error of any approximation algorithm evaluated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation ratio known so far for these problems has ratio 3/2 + epsilon, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver [On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems, SIAM J. Discrete Math. 2(1) (1989) 68-72]. We present improvements on the approximation ratio for restricted cases of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm for VTP on the class of indifference graphs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Consider the NP-hard problem of, given a simple graph G, to find a series-parallel subgraph of G with the maximum number of edges. The algorithm that, given a connected graph G, outputs a spanning tree of G, is a 1/2-approximation. Indeed, if n is the number of vertices in G, any spanning tree in G has n-1 edges and any series-parallel graph on n vertices has at most 2n-3 edges. We present a 7/12 -approximation for this problem and results showing the limits of our approach.
Resumo:
Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.
Resumo:
La presente Tesis Doctoral aborda la aplicación de métodos meshless, o métodos sin malla, a problemas de autovalores, fundamentalmente vibraciones libres y pandeo. En particular, el estudio se centra en aspectos tales como los procedimientos para la resolución numérica del problema de autovalores con estos métodos, el coste computacional y la viabilidad de la utilización de matrices de masa o matrices de rigidez geométrica no consistentes. Además, se acomete en detalle el análisis del error, con el objetivo de determinar sus principales fuentes y obtener claves que permitan la aceleración de la convergencia. Aunque en la actualidad existe una amplia variedad de métodos meshless en apariencia independientes entre sí, se han analizado las diferentes relaciones entre ellos, deduciéndose que el método Element-Free Galerkin Method [Método Galerkin Sin Elementos] (EFGM) es representativo de un amplio grupo de los mismos. Por ello se ha empleado como referencia en este análisis. Muchas de las fuentes de error de un método sin malla provienen de su algoritmo de interpolación o aproximación. En el caso del EFGM ese algoritmo es conocido como Moving Least Squares [Mínimos Cuadrados Móviles] (MLS), caso particular del Generalized Moving Least Squares [Mínimos Cuadrados Móviles Generalizados] (GMLS). La formulación de estos algoritmos indica que la precisión de los mismos se basa en los siguientes factores: orden de la base polinómica p(x), características de la función de peso w(x) y forma y tamaño del soporte de definición de esa función. Se ha analizado la contribución individual de cada factor mediante su reducción a un único parámetro cuantificable, así como las interacciones entre ellos tanto en distribuciones regulares de nodos como en irregulares. El estudio se extiende a una serie de problemas estructurales uni y bidimensionales de referencia, y tiene en cuenta el error no sólo en el cálculo de autovalores (frecuencias propias o carga de pandeo, según el caso), sino también en términos de autovectores. This Doctoral Thesis deals with the application of meshless methods to eigenvalue problems, particularly free vibrations and buckling. The analysis is focused on aspects such as the numerical solving of the problem, computational cost and the feasibility of the use of non-consistent mass or geometric stiffness matrices. Furthermore, the analysis of the error is also considered, with the aim of identifying its main sources and obtaining the key factors that enable a faster convergence of a given problem. Although currently a wide variety of apparently independent meshless methods can be found in the literature, the relationships among them have been analyzed. The outcome of this assessment is that all those methods can be grouped in only a limited amount of categories, and that the Element-Free Galerkin Method (EFGM) is representative of the most important one. Therefore, the EFGM has been selected as a reference for the numerical analyses. Many of the error sources of a meshless method are contributed by its interpolation/approximation algorithm. In the EFGM, such algorithm is known as Moving Least Squares (MLS), a particular case of the Generalized Moving Least Squares (GMLS). The accuracy of the MLS is based on the following factors: order of the polynomial basis p(x), features of the weight function w(x), and shape and size of the support domain of this weight function. The individual contribution of each of these factors, along with the interactions among them, has been studied in both regular and irregular arrangement of nodes, by means of a reduction of each contribution to a one single quantifiable parameter. This assessment is applied to a range of both one- and two-dimensional benchmarking cases, and includes not only the error in terms of eigenvalues (natural frequencies or buckling load), but also of eigenvectors
Resumo:
2000 Mathematics Subject Classification: 62J05, 62G35
Resumo:
This paper deals with finding the maximum number of security policies without conflicts. By doing so we can remove security loophole that causes security violation. We present the problem of maximum compatible security policy and its relationship to the problem of maximum acyclic subgraph, which is proved to be NP-hard. Then we present a polynomial-time approximation algorithm and show that our result has approximation ratio for any integer with complexity .
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, Programa de Pós-Graducação em Informática, 2016.
Resumo:
Esta tesis versa sobre el an álisis de la forma de objetos 2D. En visión articial existen numerosos aspectos de los que se pueden extraer información. Uno de los más usados es la forma o el contorno de esos objetos. Esta característica visual de los objetos nos permite, mediante el procesamiento adecuado, extraer información de los objetos, analizar escenas, etc. No obstante el contorno o silueta de los objetos contiene información redundante. Este exceso de datos que no aporta nuevo conocimiento debe ser eliminado, con el objeto de agilizar el procesamiento posterior o de minimizar el tamaño de la representación de ese contorno, para su almacenamiento o transmisión. Esta reducción de datos debe realizarse sin que se produzca una pérdida de información importante para representación del contorno original. Se puede obtener una versión reducida de un contorno eliminando puntos intermedios y uniendo los puntos restantes mediante segmentos. Esta representación reducida de un contorno se conoce como aproximación poligonal. Estas aproximaciones poligonales de contornos representan, por tanto, una versión comprimida de la información original. El principal uso de las mismas es la reducción del volumen de información necesario para representar el contorno de un objeto. No obstante, en los últimos años estas aproximaciones han sido usadas para el reconocimiento de objetos. Para ello los algoritmos de aproximaci ón poligonal se han usado directamente para la extracci ón de los vectores de caracter ísticas empleados en la fase de aprendizaje. Las contribuciones realizadas por tanto en esta tesis se han centrado en diversos aspectos de las aproximaciones poligonales. En la primera contribución se han mejorado varios algoritmos de aproximaciones poligonales, mediante el uso de una fase de preprocesado que acelera estos algoritmos permitiendo incluso mejorar la calidad de las soluciones en un menor tiempo. En la segunda contribución se ha propuesto un nuevo algoritmo de aproximaciones poligonales que obtiene soluciones optimas en un menor espacio de tiempo que el resto de métodos que aparecen en la literatura. En la tercera contribución se ha propuesto un algoritmo de aproximaciones que es capaz de obtener la solución óptima en pocas iteraciones en la mayor parte de los casos. Por último, se ha propuesto una versi ón mejorada del algoritmo óptimo para obtener aproximaciones poligonales que soluciona otro problema de optimización alternativo.
Resumo:
A new identification algorithm is introduced for the Hammerstein model consisting of a nonlinear static function followed by a linear dynamical model. The nonlinear static function is characterised by using the Bezier-Bernstein approximation. The identification method is based on a hybrid scheme including the applications of the inverse of de Casteljau's algorithm, the least squares algorithm and the Gauss-Newton algorithm subject to constraints. The related work and the extension of the proposed algorithm to multi-input multi-output systems are discussed. Numerical examples including systems with some hard nonlinearities are used to illustrate the efficacy of the proposed approach through comparisons with other approaches.
Resumo:
An alternative blind deconvolution algorithm for white-noise driven minimum phase systems is presented and verified by computer simulation. This algorithm uses a cost function based on a novel idea: variance approximation and series decoupling (VASD), and suggests that not all autocorrelation function values are necessary to implement blind deconvolution.