948 resultados para apparent charge transfer coefficient


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the bridging ligand on the effective Heisenberg coupling parameters is analyzed in detail. This analysis strongly suggests that the ligand-to-metal charge transfer excitations are responsible for a large part of the final value of the magnetic coupling constant. This permits us to suggest a variant of the difference dedicated configuration interaction (DDCI) method, presently one of the most accurate and reliable for the evaluation of magnetic effective interactions. This method treats the bridging ligand orbitals mediating the interaction at the same level than the magnetic orbitals and preserves the high quality of the DDCI results while being much less computationally demanding. The numerical accuracy of the new approach is illustrated on various systems with one or two magnetic electrons per magnetic center. The fact that accurate results can be obtained using a rather reduced configuration interaction space opens the possibility to study more complex systems with many magnetic centers and/or many electrons per center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the occupation of the single particle levels on the impact parameter dependent K - K charge transfer occuring in collisions of 90 keV Ne{^9+} on Ne was studied using coupled channel calculations. The energy eigenvalues and matrixelements for the single particle levels were taken from ab initio self consistent MO-LCAO-DIRAC-FOCK-SLATER calculations with occupation numbers corresponding to the single particle amplitudes given by the coupled channel calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We include solvation effects in tight-binding Hamiltonians for hole states in DNA. The corresponding linear-response parameters are derived from accurate estimates of solvation energy calculated for several hole charge distributions in DNA stacks. Two models are considered: (A) the correction to a diagonal Hamiltonian matrix element depends only on the charge localized on the corresponding site and (B) in addition to this term, the reaction field due to adjacent base pairs is accounted for. We show that both schemes give very similar results. The effects of the polar medium on the hole distribution in DNA are studied. We conclude that the effects of polar surroundings essentially suppress charge delocalization in DNA, and hole states in (GC)n sequences are localized on individual guanines

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexadecanuclear copper mixed-valence complex 2 containing 10 Cu-II, centers and 6 Cu-I centers was isolated with N,O donor ligands. From the X-ray crystal structure, 2 was found to contain a centrosymmetric dimeric cation - each monomeric unit composed of eight copper centers. It displays a very broad and weak intervalence charge-transfer band around 1100 nm at room temperature in the solid state. Variable-temperature magnetic susceptibility measurements indicate an S = 1/2 ground state for half of 2, explicitly, each Cu-8 moiety has a g value around 2.26. Complex 2 was examined by NMR spectroscopy at room temperature in solution and by EPR at low temperature; the data indicates that the valence is delocalized in 2 at room temperature but localized at low temperature. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several novel compounds with the non-linear optical chromophore 2-amino-5-nitropyridine (2A5NP) and Keggin polyoxoanions (alpha-isomers), having the general formula (2A5NP)(m)H-n[XM12O40]center dot xH(2)O, M = Mo, W, were synthesised. Compounds were obtained with X = P, n = 3, m = 3 and 4 and X = Si, n = m = 4 ( x = 2 - 6). Thus, for each of the anions [PMo12O40](3-) and [PW12O40](3-) two different compounds were obtained, with the same anion and organic counterpart but with a different stoichiometric ratio. These presented different charge transfer properties and thermal stability. All compounds were characterised by spectroscopic and analytical techniques. The single crystal X-ray diffraction structure of (2A5NP)(4)H-3[PMo12O40]center dot 2.5H(2)O center dot 0.5C(2)H(5)OH showed that the water solvent molecules and the organic chromophores are assembled via infinite one-dimensional chains of hydrogen bonds with formation of open channels, which accommodate [ PMo12O40] 3- and ethanol solvent molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rutile TiO2(110) surface has been doped with sub-monolayer metallic Cr, which oxidises and donates charge to specific surface Ti ions. X-Ray and ultra violet photoemission spectroscopy and first principles density functional theory with Hubbard U are used to assign the oxidation states of Cr and surface Ti and we find that Cr2+ forms on bridging oxygen ions and a 5-fold coordinated surface Ti atom is reduced to Ti3+ and the Cr ions readily react with oxygen (to Cr3+), which leads to depletion of surface Ti3+ 3d electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use density functional theory calculations with Hubbard corrections (DFT+U) to investigate electronic aspects of the interaction between ceria surfaces and gold atoms. Our results show that Au adatoms at the (111) surface of ceria can adopt Au0, Au+ or Au� electronic configurations depending on the adsorption site. The strongest adsorption sites are on top of the surface oxygen and in a bridge position between two surface oxygen atoms, and in both cases charge transfer from the gold atom to one of the Ce cations at the surface is involved. Adsorption at other sites, including the hollow sites of the surface, and an O–Ce bridging site, is weaker and does not involve charge transfer. Adsorption at an oxygen vacancy site is very strong and involves the formation of an Au� anion. We argue that the ability of gold atoms to stabilise oxygen vacancies at the ceria surface by moving into the vacancy site and attracting the excess electrons of the defect could be responsible for the enhanced reducibility of ceria surfaces in the presence of gold. Finally, we rationalise the differences in charge transfer behaviour from site to site in terms of the electrostatic potential at the surface and the coordination of the species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new compounds [Ru(R-DAB)(acac)2] (R-DAB = 1,4-diorganyl- 1,4-diazabuta-1,3-diene; R = tert-butyl, 4-methoxyphenyl, 2,6-dimethylphenyl; acac– = 2,4-pentanedionate) exhibit intrachelate ring bond lengths 1.297charge-transfer absorption band in the visible region and by DFT calculations. Oxidation of the compounds occurs mainly at the R-DAB·– radical ligand to produce UV/Vis/NIR and electron paramagnetic resonance (EPR) spectroelectrochemically detectable RuIII species, whereas the reduction proceeds less reversibly and yields predominantly (R-DAB)-ligand-based spin for the 4-methoxyphenyl derivative, measured at low temperature. The results are discussed with respect to metal-to-ligand chargetransfer (MLCT) excited states of conventional (α-diimine)- ruthenium(II) complexes and in view of other (α-diimine)- metal complexes with ambiguous oxidation-state assignments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the origin of the properties of metal-supported metal thin films is important for the rational design of bimetallic catalysts and other applications, but it is generally difficult to separate effects related to strain from those arising from interface interactions. Here we use density functional (DFT) theory to examine the structure and electronic behavior of few-layer palladium films on the rhenium (0001) surface, where there is negligible interfacial strain and therefore other effects can be isolated. Our DFT calculations predict stacking sequences and interlayer separations in excellent agreement with quantitative low-energy electron diffraction experiments. By theoretically simulating the Pd core-level X-ray photoemission spectra (XPS) of the films, we are able to interpret and assign the basic features of both low-resolution and high-resolution XPS measurements. The core levels at the interface shift to more negative energies, rigidly following the shifts in the same direction of the valence d-band center. We demonstrate that the valence band shift at the interface is caused by charge transfer from Re to Pd, which occurs mainly to valence states of hybridized s-p character rather than to the Pd d-band. Since the d-band filling is roughly constant, there is a correlation between the d-band center shift and its bandwidth. The resulting effect of this charge transfer on the valence d-band is thus analogous to the application of a lateral compressive strain on the adlayers. Our analysis suggests that charge transfer should be considered when describing the origin of core and valence band shifts in other metal / metal adlayer systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of phases, CoxTiS2 (0 ≤ x ≤ 0.75) has been prepared and characterised by powder X-ray and neutron diffraction, electrical and thermal transport property measurements, thermal analysis and SQUID magnetometry. With increasing cobalt content, the structure evolves from a disordered arrangement of cobalt ions in octahedral sites located in the van der Waals’ gap (x ≤ 0.2), through three different ordered vacancy phases, to a second disordered phase at x ≥ 0.67. Powder neutron diffraction reveals that both octahedral and tetrahedral inter-layer sites are occupied in Co0.67TiS2. Charge transfer from the cobalt guest to the TiS2 host affords a systematic tuning of the electrical and thermal transport properties. At low levels of cobalt intercalation (x < 0.1), the charge transfer increases the electrical conductivity sufficiently to offset the concomitant reduction in |S|. This, together with a reduction in the overall thermal conductivity leads to thermoelectric figures of merit that are 25 % higher than that of TiS2, ZT reaching 0.30 at 573 K for CoxTiS2 with 0.04 ≤ x ≤ 0.08. Whilst the electrical conductivity is further increased at higher cobalt contents, the reduction in |S| is more marked due to the higher charge carrier concentration. Furthermore both the charge carrier and lattice contributions to the thermal conductivity are increased in the electrically conductive ordered-vacancy phases, with the result that the thermoelectric performance is significantly degraded. These results illustrate the competition between the effects of charge transfer from guest to host and the disorder generated when cobalt cations are incorporated in the inter-layer space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the optical properties of edge-fiinctionalized graphene nanosystems, focusing on the formation of junctions and charge-transfer excitons. We consider a class of graphene structures that combine the main electronic features of graphene with the wide tunability of large polycyclic aromatic hydrocarbons. By investigating prototypical ribbon-like systems, we show that, upon convenient choice of functional groups, low-energy excitations with remarkable charge-transfer character and large oscillator strength are obtained. These properties can be further modulated through an appropriate width variation, thus spanning a wide range in the low-energy region of the UV-vis spectra. Our results are relevant in view of designing all-graphene optoelectronic nanodevices, which take advantage of the versatility of molecular functionalization, together with the stability and the electronic properties of graphene nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the amine sulfur dioxide chemistry was well characterized in the past both experimentally and theoretically, no systematic Raman spectroscopic study describes the interaction between N,N-dimethylaniline (DMA) and sulfur dioxide (SO(2)). The formation of a deep red oil by the reaction of SO(2) with DMA is an evidence of the charge transfer (CT) nature of the DMA-SO(2) interaction. The DMA -SO(2) normal Raman spectrum shows the appearance of two intense bands at 1110 and 1151 cm(-1), which are enhanced when resonance is approached. These bands are assigned to nu(s)(SO(2)) and nu(phi-N) vibrational modes, respectively, confirming the interaction between SO(2) and the amine via the nitrogen atom. The dimethyl group steric effect favors the interaction of SO(2) with the ring pi electrons, which gives rise to a pi-pi* low-energy CT electronic transition, as confirmed by time-dependent density functional theory (TDDFT) calculations. In addition, the calculated Raman DMA-SO(2) spectrum at the B3LYP/6-311++g(3df,3pd) level shows good agreement with the experimental results (vibrational wavenumbers and relative intensities), allowing a complete assignment of the vibrational modes. A better understanding of the intermolecular interactions in this model system can be extremely useful in designing new materials to absorb, detect, or even quantify SO(2). Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dideprotonation of 4-(4-nitrophenylazo)resorcinol generates an anionic species with substantial electronic pi delocalization. As compared to the parent neutral species, the anionic first excited electronic transition, characterized as an intramolecular charge transfer (ICT) from the CO(-) groups to the NO(2) moiety, shows a drastic red shift of ca. 200 nm in the lambda(max) in the UV-vis spectrum, leading to one of the lowest ICT energies observed (lambda(max) = 630 nm in dimethyl sulfoxide (DMSO)) in this class of push-pull molecular systems. Concomitantly, a threefold increase in the molar absorptivity (epsilon(max)) in comparison to the neutral species is observed. The resonance Raman enhancement profiles reveal that in the neutral species the chromophore involves several modes, as nu(C-N), nu(N=N), nu(C=C) and nu(s)(NO(2)), whereas in the dianion, there is a selective enhancement of the NO(2) vibrational modes. The quantum chemical calculations of the electronic transitions and vibrational wavenumbers led to a consistent analysis of the enhancement patterns observed in the resonance Raman spectra. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzene adsorbed on highly acidic sulfated TiO2 (S-TiO2) shows an intriguing resonance Raman (RR) effect, with excitation in the blue-violet region. There are very interesting spectral features: the preferential enhancement of the e(2g) mode (1595 cm(-1)) in relation to the a(1g) mode (ring-breathing mode at 995 cm(-1)) and the appearance of bands at 1565 and 1514 cm(-1). The band at 1565 cm(-1) is probably one of the components of the e(2g) split band, originally a doubly degenerate mode (8a, 8b) in neat benzene, and the band at 1514 cm(-1) is assigned to the 19a mode, an inactive mode in neat benzene. These facts indicate a lowering of symmetry in adsorbed benzene, which may be caused by a strong interaction between S-TiO2 and the benzene molecule with formation of a benzene to Ti (IV) charge transfer (CT) complex or by the formation of a benzene radical cation species. However, the RR spectra of the adsorbed benzene cannot be assigned to the benzene radical cation because the observed wavenumber of the ring-breathing mode does not have the value expected for this species. Moreover, it was found by ESR measurements that the amount of radicals was very low, and so it was concluded that a CT complex is the species that originates the RR spectra. The most favorable intensification of the band at 1595 cm(-1) in the RR spectra of benzene/S-TiO2 at higher excitation energy corroborates this hypothesis, as an absorption band in this energy range, assigned to a CT transition, is observed. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at E(laser) = 1.17 eV suggest that a charge-transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright (C) 2010 John Wiley & Sons, Ltd.