996 resultados para antifungal activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two essential oils of Lippia alba (Mill.) N.E. Brown (Verbenacea), the carvone and citral chemotypes and 15 of their compounds were evaluated to determine cytotoxicity and antifungal activity. Cytotoxicity assays for both the citral and carvone chemotypes were carried out with tetrazolium-dye, which showed a dose-dependent cytotoxic effect against HeLa cells. Interestingly, this effect on the evaluated cells (HeLa and the non-tumoural cell line, Vero) was lower than that of commercial citral alone. Commercial citral showed the highest cytotoxic activity on HeLa cells. The antifungal activity was evaluated against Candida parapsilosis, Candida krusei, Aspergillus flavus and Aspergillus fumigatus strains following the standard protocols, Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing and CLSI M38-A. Results demonstrated that the most active essential oil was the citral chemotype, with geometric means-minimal inhibitory concentration (GM-MIC) values of 78.7 and 270.8 μg/mL for A. fumigatus and C. krusei, respectively. Commercial citral showed an antifungal activity similar to that of the citral chemotype (GM-MIC values of 62.5 μg/mL for A. fumigatus and 39.7 μg/mL for C. krusei). Although the citronellal and geraniol were found in lower concentrations in the citral chemotype, they had significant antifungal activity, with GM-MIC values of 49.6 μg/mL for C. krusei and 176.8 μg/mL for A. fumigatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY Roots of crop plants are the target of soil-borne pathogens, mainly fungi that cause considerable damage to plant health. By antagonizing these pathogens, some root-colonizing pseudomonads provide plants with efficient biological protection from disease. Pseudomonas fluorescens CHAO is a soil bacterium with the ability to suppress a considerable range of root diseases. A major characteristic conferring biocontrol capacity to this strain is the production of antifungal compounds, in particular 2,4-diacetyphloroglucinol (DAPG) and pyoluteorin (PLT). The regulation of the biosyntheses of these metabolites is complex and involves several regulatory systems responding to multiple environmental signals. In the present work, we have developed reporter systems based on green (GFP) and red fluorescent (DsRed) proteins to monitor regulation of antifungal gene expression in vitro and on plant roots. Stable and unstable GFP-based reporter fusions to the DAPG and PLT biosynthetic genes allowed us to demonstrate that P. fluorescens CHAO keeps the two antifungal compounds at a fine-tuned balance that can be affected by environmental signals. A GFP-based screening technique helped us to identify two novel regulators of balanced antibiotic production, i.e. MvaT and MvaV that are functionally and structurally related to the nucleoid-binding protein H-NS. They act in concert as global regulators of DAPG and PLT production and other biocontrol-related traits in P. fluorescens CHAO, and are essential for the bacterium's capacity to control a root disease caused by Pythium. The combined use of autofluorescent reporters, flow cytometry, and epifluorescence microscopy permitted us to visualize and quantify the expression of DAPG and PLT biosynthetic genes on roots. A GFP- and DsRed-based two-color approach was then developed to further improve the sensitivity of the flow cytometric quantitation method. The findings of this study shed more light on the complex regulatory mechanisms controlling antifungal activity of P. filuorescens in the rhizosphere. RESUME 4 e Les racines de plantes de culture sont la cible de divers pathogènes, principalement des champignons, qui nuisent gravement à la santé des plantes. Certains pseudomonades colonisant les racines peuvent avoir un effet antagoniste sur les pathogènes et protéger ainsi les plantes de manière efficace. Pseudomonas fluorescens CHAO est une bactérie du sol ayant la capacité de supprimer une gamme considérable de maladies racinaires. Une des caractéristiques principales conférant la capacité de biocontrôle à cette souche, est la production de composés antifongiques, en particulier le 2,4-diacétyphloroglucinol (DAPG) et la pyolutéorine (PLT). La régulation de la biosynthèse de ces métabolites est complexe et implique plusieurs systèmes régulateurs répondant à de multiples signaux environnementaux. Dans ce travail, nous avons développé des systèmes rapporteurs basés sur des protéines fluorescentes verte (GFP) et rouge (DsRed), afin d'étudier la régulation de l'expression des gènes d'antifongiques in vitro et sur les racines des plantes. Des fusions GFP stables et instables rapportrices de l'expression des gènes de biosynthèse du DAPG et de la PLT nous ont permis de démontrer que P. fluorescens CHAO gère les deux antifongiques dans une balance finement régulée pouvant être affectée par des signaux environnementaux. Une technique de criblage basée sur la GFP nous a permis d'identifier deux nouveaux régulateurs de la production d'antibiotiques, MvaT et MvaV, apparentés à la protéine H-NS liant l'ADN, Elles agissent de concert en tant que régulateurs globaux sur la production de DAPG et de PLT, ainsi que sur d'autres éléments relatifs au biocontrôle chez P. fluorescens CHAO. De plus, elles sont essentielles à la bactérie pour contrôler une maladie racinaire causée par Pythium. L'utilisation combinée de rapporteurs autofluorescents, de cytométrie de flux et de microscopie à épifluorescence nous a permis de visualiser et de quantifier l'expression des gènes de biosynthèse du DAPG et de la PLT sur les racines. Une approche utilisant simultanément la GFP et la DsRed a ensuite été développée afin d'améliorer la sensibilité de la méthode de quantification par cytométrie de flux. Les résultats de cette étude ont apporté plus de lumière sur les mécanismes régulateurs complexes contrôlant l'activité antifongique de P. fluorescens dans la rizosphère.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RésuméEn agriculture d'énormes pertes sont causées par des champignons telluriques pathogènes tels que Thielaviopsis, Fusarium, Gaeumannomyces et Rhizoctonia ou encore l'oomycète Pythium. Certaines bactéries dites bénéfiques, comme Pseudomonas fluorescens, ont la capacité de protéger les plantes de ces pathogènes par la colonisation de leur racines, par la production de métabolites secondaires possédants des propriétés antifongiques et par l'induction des mécanismes de défenses de la plante colonisée. P. fluorescens CHAO, une bactérie biocontrôle isolée d'un champ de tabac à Payerne, a la faculté de produire un large spectre de métabolites antifongiques, en particulier le 2,4- diacétylphloroglucinol (DAPG), la pyolutéorine (PLT), le cyanure d'hydrogène (HCN), la pyrrolnitrine (PRN) ainsi que des chélateurs de fer.La plante, par sécrétion racinaire, produit des rhizodéposites, source de carbone et d'azote, qui profitent aux populations bactériennes vivant dans la rhizosphere. De plus, certains stresses biotiques et abiotiques modifient cette sécrétion racinaire, en terme quantitatif et qualitatif. De leur côté, les bactéries bénéfiques, améliorent, de façon direct et/ou indirect, la croissance de la plante hôte. De nombreux facteurs biotiques et abiotiques sont connus pour réguler la production de métabolites secondaires chez les bactéries. Des études récentes ont démontré l'importance de la communication entre la plante et les bactéries bénéfiques afin que s'établisse une interaction profitant à chacun des deux partis. Il est ainsi vraisemblable que les populations bactériennes associées aux racines soient capables d'intégrer ces signaux et d'adapter spécifiquement leur comportement en conséquence.La première partie de ce travail de thèse a été la mise au point d'outils basés sur la cytométrie permettant de mesurer l'activité antifongique de cellules bactériennes individuelles dans un environnent naturel, les racines des plantes. Nous avons démontré, grâce à un double marquage aux protéines autofluorescentes GFP et mCherry, que les niveaux d'expression des gènes impliqués dans la biosynthèse des substances antifongiques DAPG, PLT, PRN et HCN ne sont pas les mêmes dans des milieux de cultures liquides que sur les racines de céréales. Par exemple, l'expression de pltA (impliqué dans la biosynthèse du PLT) est quasiment abolie sur les racines de blé mais atteint un niveau relativement haut in vitro. De plus cette étude a mis en avant l'influence du génotype céréalien sur l'expression du gène phlA qui est impliqué dans la biosynthèse du DAPG.Une seconde étude a révélé la communication existant entre une céréale (orge) infectée par le pathogène tellurique Pythium ultimum et P. fluorescens CHAO. Un système de partage des racines nous a permis de séparer physiquement le pathogène et la bactérie bénéfique sur la plante. Cette méthode a donné la possibilité d'évaluer l'effet systémique, causé par l'attaque du pathogène, de la plante sur la bactérie biocontrôle. En effet, l'infection par le phytopathogène modifie la concentration de certains composés phénoliques dans les exsudats racinaires stimulant ainsi l'expression de phi A chez P.fluorescens CHAO.Une troisième partie de ce travail focalise sur l'effet des amibes qui sont des micro-prédateurs présents dans la rhizosphere. Leur présence diminue l'expression des gènes impliqués dans la biosynthèse du DAPG, PLT, PRN et HCN chez P.fluorescens CHAO, ceci en culture liquide et sur des racines d'orge. De plus, des molécules provenant du surnageant d'amibes, influencent l'expression des gènes requis pour la biosynthèse de ces antifongiques. Ces résultats illustrent que les amibes et les bactéries de la rhizosphere ont développé des stratégies pour se reconnaître et adapter leur comportement.La dernière section de ce travail est consacrée à l'acide indole-acétique (LA.A), une phytohormone connue pour son effet stimulateur sur phlA. Une étude moléculaire détaillée nous a démontré que cet effet de l'IAA est notamment modulé par une pompe à efflux (FusPl) et de son régulateur transcriptionnel (MarRl). De plus, les gènes fusPl et marRl sont régulés par d'autres composés phénoliques tels que le salicylate (un signal végétal) et l'acide fusarique (une phytotoxine du pathogène Fusarium).En résumé, ce travail de thèse illustre la complexité des interactions entre les eucaryotes et procaryotes de la rhizosphère. La reconnaissance mutuelle et l'instauration d'un dialogue moléculaire entre une plante hôte et ses bactéries bénéfiques associées? sont indispensables à la survie des deux protagonistes et semblent être hautement spécifiques.SummaryIn agriculture important crop losses result from the attack of soil-borne phytopathogenic fungi, including Thielaviopsis, Fusarium, Gaeumannomyces and Rhizoctonia, as well as from the oomycete Pythium. Certain beneficial microorganisms of the rhizosphere, in particular Pseudomonas fluorescens, have the ability to protect plants against phytopathogens by the intense colonisation of roots, by the production of antifungal exoproducts, and by induction of plant host defences. P. fluorescens strain CHAO, isolated from a tobacco field near Payerne, produces a large array of antifungal exoproducts, including 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT), hydrogen cyanide (HCN), pyrrolnitrin (PRN) and iron chelators. Plants produce rhizodeposites via root secretion and these represent a relevant source of carbon and nitrogen for rhizosphere microorganisms. Various biotic and abiotic stresses influence the quantity and the quality of released exudates. One the other hand, beneficial bacteria directly or indirectly promote plant growth. Biotic and abiotic factors regulate exoproduct production in biocontrol microorganisms. Recent studies have highlighted the importance of communication in establishing a fine-tuned mutualist interaction between plants and their associated beneficial bacteria. Bacteria may be able to integrate rhizosphere signals and adapt subsequently their behaviour.In a first part of the thesis, we developed a new method to monitor directly antifungal activity of individual bacterial cells in a natural environment, i.e. on roots of crop plants. We were able to demonstrate, via a dual-labelling system involving green and red fluorescent proteins (GFP, mCherry) and FACS-based flow cytometry, that expression levels of biosynthetic genes for the antifungal compounds DAPG, PLT, PRN, and HCN are highly different in liquid culture and on roots of cereals. For instance, expression of pltA (involved in PLT biosynthesis) was nearly abolished on wheat roots whereas it attained a relatively high level under in vitro conditions. In addition, we established the importance of the cereal genotype in the expression of phi A (involved in DAPG biosynthesis) in P. fluorescens CHAO.A second part of this work highlighted the systemic communication that exists between biocontrol pseudomonads and plants following attack by a root pathogen. A split-root system, allowing physical separation between the soil-borne oomycete pathogen Phytium ultimum and P. fluorescens CHAO on barley roots, was set up. Root infection by the pathogen triggered a modification of the concentration of certain phenolic root exudates in the healthy root part, resulting in an induction ofphlA expression in P. fluorescens CHAO.Amoebas are micro-predators of the rhizosphere that feed notably on bacteria. In the third part of the thesis, co-habitation of Acanthamoeba castellanii with P. fluorescens CHAO in culture media and on barley roots was found to significantly reduce bacterial expression of genes involved in the biosynthesis of DAPG, PLT, HCN and PRN. Interestingly, molecular cues present in supernatant of A. castelanii induced the expression of these antifungal genes. These findings illustrate the strategies of mutual recognition developed by amoeba and rhizosphere bacteria triggering responses that allow specific adaptations of their behaviour.The last section of the work focuses on indole-3-acetic acid (IAA), a phytohormone that stimulates the expression of phi A. A detailed molecular study revealed that the IAA-mediated effect on phi A is notably modulated by an efflux pump (FusPl) and its transcriptional regulator (MarRl). Remarkably, transcription of fusPl and marRl was strongly upregulated in presence of other phenolic compounds such as salicylate (a plant signal) and fusaric acid (a phytotoxin of the pathogenic fungus Fusarium).To sum up, this work illustrates the great complexity of interactions between eukaryotes and prokaryotes taking place in the rhizosphere niche. The mutual recognition and the establishment of a molecular cross-talk between the host plant and its associated beneficial bacteria are essential for the survival of the two partners and these interactions appear to be highly specific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Invasive mould infections are associated with a high mortality rate and the emergence of MDR moulds is of particular concern. Calcineurin and its chaperone, the heat shock protein 90 (Hsp90), represent an important pathway for fungal virulence that can be targeted at different levels. We investigated the antifungal activity of compounds directly or indirectly targeting the Hsp90-calcineurin axis against different mould species. METHODS: The in vitro antifungal activity of the anticalcineurin drug FK506 (tacrolimus), the Hsp90 inhibitor geldanamycin, the lysine deacetylase inhibitor trichostatin A and the Hsp70 inhibitor pifithrin-μ was assessed by the standard broth dilution method against 62 clinical isolates of Aspergillus spp. and non-Aspergillus moulds (Mucoromycotina, Fusarium spp., Scedosporium spp., Purpureocillium/Paecilomyces spp. and Scopulariopsis spp.) RESULTS: FK506 had variable antifungal activity against different Aspergillus spp. and was particularly active against Mucor spp. Geldanamycin had moderate antifungal activity against Fusarium spp. and Paecilomyces variotii. Importantly, trichostatin A had good activity against the triazole-resistant Aspergillus ustus and the amphotericin B-resistant Aspergillus terreus as well as the MDR Scedosporium prolificans. Moreover, trichostatin A exhibited synergistic interactions with caspofungin against A. ustus and with geldanamycin against Rhizopus spp. for which none of the other agents showed activity. Pifithrin-μ exhibited little antifungal activity. CONCLUSIONS: Targeting the Hsp90-calcineurin axis at different levels resulted in distinct patterns of susceptibility among different fungal species. Lysine deacetylase inhibition may represent a promising novel antifungal strategy against emerging resistant moulds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The treatment of Candida implant-associated infections remains challenging. We investigated the antifungal activity against planktonic and biofilm Candida albicans in a foreign-body infection model. METHODS: Teflon cages were subcutaneously implanted in guinea pigs, infected with C. albicans (ATCC 90028). Animals were treated intraperitoneally 12 h after infection for 4 days once daily with saline, fluconazole (16 mg/kg), amphotericin B (2.5 mg/kg), caspofungin (2.5 mg/kg) or anidulafungin (20 mg/kg). Planktonic Candida was quantified, the clearance rate and cure rate determined. RESULTS: In untreated animals, planktonic Candida was cleared from cage fluid in 25% (infected with 4.5 × 10(3) CFU/cage), 8% (infected with 4.8 × 10(4) CFU/cage) and 0% (infected with 6.2 × 10(5) CFU/cage). Candida biofilm persisted on all explanted cages. Compared to untreated controls, caspofungin reduced the number of planktonic C. albicans to 0.22 and 0.0 CFU/ml, respectively, and anidulafungin to 0.11 and 0.13 CFU/ml, respectively. Fluconazole cured 2/12 cages (17%), amphotericin B and anidulafungin 1/12 cages (8%) and caspofungin 3/12 cages (25%). CONCLUSION: Echinocandins showed superior activity against planktonic C. albicans. Caspofungin showed the highest cure rate of C. albicans biofilm. However, no antifungal exceeded 25% cure rate, demonstrating the difficulty of eradicating Candida biofilms from implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition of essential oils from leaves, stems and fruits of Piper aduncum, P. arboreum and P. tuberculatum was examined by means of GC-MS and antifungal assay. There was a predominance of monoterpenes in P. aduncum and P. tuberculatum and of sesquiterpenes in P. arboreum. P. aduncum showed the richest essential oil composition, including linalool. The essential oils from fruits of P. aduncum and P. tuberculatum showed the highest antifungal activity with the MIC of 10 µg as determined against Cladosporium cladosporioides and C. sphaerospermum, respectively. This is the first report of the composition of essential oils from P. tuberculatum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphotericin B (AB) is the standard drug for invasive fungal infection therapy. It has a broad spectrum of activity and it is the best antifungal available against most yeasts and molds. Its therapeutic use, however, is limited by significant side effects, leading to a low therapeutic index when it is used as the traditional formulation (Fungizone®). Due to self-association, AB can form pores in cholesterol-containing membranes. We propose a triglyceride-rich nanoemulsion as a delivery system for AB in low levels of aggregation to reduce the toxicity against host cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we describe the total syntheses and characterization by elemental analyses, infrared and NMR spectroscopy of three new compounds analogous to avenaciolide, a bis-γ-lactone isolated from Aspergillus avenaceus that possesses antifungal activity, where the octyl group of the natural product was replaced by aromatic groups containing chlorine and fluorine atoms. The effects of the avenaciolide, the novel compounds and their synthetic precursors on mycelia development and conidia germination of Colletotrichum gloeosporioides and Fusarium solani were evaluated in vitro. The title compounds were almost as active as avenaciolide. The absolute structures of the chlorinated analogs were determined by X-ray diffraction analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new compounds with the general formula [Fe(phen)3][Zn(RSO2N=CS2)2], where phen = 1,10-phenanthroline, R = 4-FC6H4 (1), 4-ClC6H4 (2), 4-BrC6H4 (3) and 4-IC6H4 (4), respectively, were obtained by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate (RSO2N=CS2K2) and tris(1,10-phenanthroline)iron(II) sulfate, with zinc(II) acetate dihydrate in dimethylformamide. The elemental analyses and the IR data were consistent with the formation of the expected complexes salts. The ¹H and 13C NMR spectra showed the signals for the cationic iron(II) complex and dithiocarbimate moieties. The molar conductance data were consistent with the 1:1 cation:anion complexes in 1-4. The antifungal activities of the compounds were tested in vitro against Candida albicans, Candida tropicalis and Colletotrichum gloeosporioides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of six new palmitic acid-based neoglycolipids related to Papulacandin D were synthesized in five steps, resulting in good yields, and they were evaluated against Candida spp. All twelve synthetic intermediates were also evaluated. The synthesis involved the initial glycosylation of two phenols (4-hydroxy-3-methoxybenzaldehyde and 3-hydroxybenzaldehyde) via their reaction with peracetylated glucosyl bromide. This was followed by deacetylation with potassium methoxide/metanol solution and the protection of two hydroxyls (C4 and C6 positions) of the saccharide unit as benzilidene acetals (10-11). The next step involved the acylation of the acetal derivatives with palmitic acid, thereby affording a mixture of two isomers mono-acylated at the C2 and C3 positions and a di-acylated product (12-17). After being isolated, each compound was subjected to the removal of the acetal protecting group to yield the papulacandin D analogues 18-23. Three compounds showed low antifungal activity against two species: C. albicans (compounds 7 and 23) and C. tropicalis (compound 17) at 200 µg mL−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vivo antifungal activity of the naphthoquinone beta-lapachone against disseminated infection by Cryptococcus neoformans was investigated. Swiss mice were immunosuppressed daily with dexamethasone (0.5 mg per mouse) intraperitoneally for 3 days, the procedure was repeated 4 days later, and the animals were then challenged intravenously with C. neoformans (10(6) CFU/mL) 1 week later. Seven days after infection, the mice were divided into groups and treated daily with beta-lapachone (10 mg/kg, iv) for 7 (N = 6) and 14 days (N = 10). Amphotericin B (0.5 mg/kg) was used as comparator drug and an additional group received PBS. Treatment with beta-lapachone cleared the yeast from the spleen and liver, and the fungal burden decreased approximately 10(4) times in the lungs and brain 14 days after infection when compared to the PBS group (P < 0.05). This result was similar to that of the amphotericin B-treated group. Protection was suggestively due to in vivo antifungal activity of this drug and apparently not influenced by activation of the immune response, due to similar leukocyte cell counts among all groups. This study highlights the prospective use of beta-lapachone for treatment of disseminated cryptococcosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Penicillium expansum is the causative agent of apple blue mold. The inhibitory effects of the capsaicin derived from Capsicum spp. fruits and yeast Hansenula wingei against P. expansum were evaluated in an in vitro and in in vivo assay using Fuji apples. The minimum inhibitory concentration of capsaicin determined using the broth micro-dilution method was 122.16 µg mL-1. Capsaicin did not reduce blue mold incidence in apples. However, it was able to delay fungal growth in the first 14 days of the in vivo assay. The in vivo effect of the yeast Hansenula wingei AM2(-2), alone and combined with thiabendazole at low dosage (40 µg mL-1), on the incidence of apple diseases caused by P. expansum was also described. H. wingei AM2(-2) combined with a low fungicide dosage (10% of the dosage recommended by the manufacturer) showed the best efficacy (100%) up to 7 days of storage at 21 ºC, later showing a non-statistically different decrease (p > 0.05) after 14 (80.45%) and 21 days (72.13%), respectively. These results contribute providing new options for using antifungal agents against Penicillium expansum.