909 resultados para antibiotic-resistant serotypes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous work, Salmonella enterica serovar Typhimurium strain SL1344 was exposed to sublethal concentrations of three widely used farm disinfectants in daily serial passages for 7 days in an attempt to investigate possible links between the use of disinfectants and antimicrobial resistance. Stable variants OXCR1, QACFGR2, and TOPR2 were obtained following treatment with an oxidizing compound blend, a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde, and a tar acid-based disinfectant, respectively. All variants exhibited ca. fourfold-reduced susceptibility to ciprofloxacin, chloramphenicol, tetracycline, and ampicillin. This coincided with reduced levels of outer membrane proteins for all strains and high levels of AcrAB-To1C for OXCR1 and QACFGR2, as demonstrated by two-dimensional high-performance liquid chromatography-mass spectrometry. The protein profiles of OXCR1 and QACFGR2 were similar, but they were different from that of TOPR2. An array of different proteins protecting against oxidants, nitroaromatics, disulfides, and peroxides were overexpressed in all strains. The growth and motility of variants were reduced compared to the growth and motility of the parent strain, the expression of several virulence proteins was altered, and the invasiveness in an enteric epithelial cell line was reduced. The colony morphology of OXCR1 and QACFGR2 was smooth, and both variants exhibited a loss of modal distribution of the lipopolysaccharide O-antigen chain length, favoring the production of short O-antigen chain molecules. Metabolic changes were also detected, suggesting that there was increased protein synthesis and a shift from oxidative phosphorylation to substrate level phosphorylation. In this study, we obtained evidence that farm disinfectants can select for strains with reduced susceptibility to antibiotics, and here we describe changes in protein expression in such strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: In Escherichia coli, increased expression of efflux pumps and/or decreased expression of porins can confer multiple antibiotic resistance (MAR), causing resistance to at least three unrelated classes of antibiotics, detergents and dyes. It was hypothesized that in Campylobacter jejuni, the efflux systems CmeABC, CmeDEF and the major outer membrane porin protein, MOMP (encoded by porA) could confer MAR. Methods: The expression of cmeB, cmeF and porA in 32 MAR C. jejuni isolated from humans or poultry was determined by comparative (C)-reverse transcriptase (RT)-PCR and denaturing DHPLC. A further 13 ethidium bromide-resistant isolates and three control strains were also investigated. Accumulation of ciprofloxacin carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) was also determined for all strains. Results: Although resistance to ethidium bromide has been associated with MAR, expression of all three genes was similar in the ethidium bromide-resistant isolates. These data indicate that CmeB, CmeF and MOMP play no role in resistance to this agent in C. jejuni. Six MAR isolates over-expressed cmeB, 3/32 over-expressed cmeB and cmeF. No isolates over-expressed cmeF alone. Expression of porA was similar in all isolates. All nine isolates that over-expressed cmeB contained a mutation in cmeR, substituting glycine 86 with alanine. All cmeB over-expressing isolates also accumulated low concentrations of ciprofloxacin, which were restored to wild-type levels in the presence of CCCP. Conclusions: These data indicate that over-expression of cmeB is associated with MAR in isolates of C. jejuni. However, as cmeB was over-expressed by only one-third (9/32) of MAR isolates, these data also indicate other mechanisms of MAR in C. jejuni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine the effect of growth of five strains of Salmonella enterica and their isogenic multiply antibiotic-resistant (MAR) derivatives with a phenolic farm disinfectant or triclosan (biocides) upon the frequency of mutation to resistance to antibiotics or cyclohexane. Methods: Strains were grown in broth with or without the biocides and then spread on to agar containing ampicillin, ciprofloxacin or tetracycline each at 4x MIC or agar overlaid with cyclohexane. Incubation was for 24 and 48 h and the frequency of mutation to resistance was calculated for strains with and without prior growth with the biocides. MICs were determined and the presence of mutations in the acrR and marR regions was determined by sequencing and the presence of mutations in gyrA by light-cycler analysis, for a selection of the mutants that arose. Results: The mean frequency of mutation to antibiotic or cyclohexane resistance was increased similar to10- to 100-fold by prior growth with the phenolic disinfectant or triclosan. The increases were statistically significant for all antibiotics and cyclohexane following exposure to the phenolic disinfectant (P less than or equal to 0.013), and for ampicillin and cyclohexane following exposure to triclosan (P less than or equal to 0.009). Mutants inhibited by >1 mg/L ciprofloxacin arose only from strains that were MAR. Reduced susceptibility to ciprofloxacin (at 4x MIC for parent strains) alone was associated with mutations in gyrA. MAR mutants did not contain mutations in the acrR or marR region. Conclusions: These data renew fears that the use of biocides may lead to an increased selective pressure towards antibiotic resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the development of the first antibiotics in the 1940’s, there has been widespread overuse in both clinical and agricultural applications. Antibiotic resistance has become a significant problem as a result of subsequent dissemination of antibiotics into the environment, and multiply-resistant strains of bacteria are now a major pathogenic threat. In this study eight separate strains of Flavobacterium responsible for recent disease outbreaks in fish hatcheries throughout Maine were collected and analyzed. All eight strains were found to be resistant to high levels of a number of different antibiotics, including those used for aquaculture as well as human chemotherapeutic applications. Flavobacterium isolates were also shown phenotypically to transfer antibiotic resistance determinants using a conjugation mating system in which Flavobacterium was the donor and Escherichia coli DH5- alpha was the recipient. This experiment suggests that it may be possible for Flavobacterium strains to transfer their multiple antibiotic resistance determinants to human pathogenic bacterial strains. Importantly, none of the hatcheries from which the Flavobacterium isolates were obtained had ever used antibiotics to treat their fish stock. It is possible that there is another selective agent responsible for the development of antibiotic resistance in the absence of antibiotic pressure. Mercury is one possible candidate, as all of the strains tested were resistant to mercuric chloride and it is known that genes encoding antibiotic resistance can be carried on the same mobile genetic elements that encode for mercury resistance. Preliminary data also suggest that the majority of the Flavobacterium isolates contain genes for mercuric ion reduction, which would confirm the mercury resistance genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirteen spontaneous multiple-antibiotic-resistant (Mar) mutants of Escherichia coli AG100 were isolated on Luria-Bertani (LB) agar in the presence of tetracycline (4 microg/ml). The phenotype was linked to insertion sequence (IS) insertions in marR or acrR or unstable large tandem genomic amplifications which included acrAB and which were bordered by IS3 or IS5 sequences. Five different lon mutations, not related to the Mar phenotype, were also found in 12 of the 13 mutants. Under specific selective conditions, most drug-resistant mutants appearing late on the selective plates evolved from a subpopulation of AG100 with lon mutations. That the lon locus was involved in the evolution to low levels of multidrug resistance was supported by the following findings: (i) AG100 grown in LB broth had an important spontaneous subpopulation (about 3.7x10(-4)) of lon::IS186 mutants, (ii) new lon mutants appeared during the selection on antibiotic-containing agar plates, (iii) lon mutants could slowly grow in the presence of low amounts (about 2x MIC of the wild type) of chloramphenicol or tetracycline, and (iv) a lon mutation conferred a mutator phenotype which increased IS transposition and genome rearrangements. The association between lon mutations and mutations causing the Mar phenotype was dependent on the medium (LB versus MacConkey medium) and the antibiotic used for the selection. A previously reported unstable amplifiable high-level resistance observed after the prolonged growth of Mar mutants in a low concentration of tetracycline or chloramphenicol can be explained by genomic amplification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This subject is reviewed under the following headings: Microbial contamination of raw meat and raw milk; Antibiotic resistance of food-borne pathogens; Antibiotic resistance of commensal and potentially pathogenic bacteria as a new threat in food microbiology; Antibiotic-resistant staphylococci in fermented meat and [in] milk products; Antibiotic-resistant Enterococcus sp. in fermented meat and [in] milk products; Enterococci in farm animals and meat; Enterococci in fermented food; Molecular characterization of resistance of food-borne enterococci; and Further ecological and epidemiological considerations of resistant live bacteria in food. It is concluded that further research is needed, particularly into the possible transfer of the resistance of bacteria consumed in meat or milk products to the indigenous bacteria of the human consumer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sexually transmitted bacterium Neisseria gonorrhoeae has developed resistance to all antibiotic classes that have been used for treatment and strains resistant to multiple antibiotic classes have evolved. In many countries, there is only one antibiotic remaining for empirical N. gonorrhoeae treatment, and antibiotic management to counteract resistance spread is urgently needed. Understanding dynamics and drivers of resistance spread can provide an improved rationale for antibiotic management. In our study, we first used antibiotic resistance surveillance data to estimate the rates at which antibiotic-resistant N. gonorrhoeae spread in two host populations, heterosexual men (HetM) and men who have sex with men (MSM). We found higher rates of spread for MSM (0.86 to 2.38 y-1, mean doubling time: 6 months) compared to HetM (0.24 to 0.86 y-1, mean doubling time: 16 months). We then developed a dynamic transmission model to reproduce the observed dynamics of N. gonorrhoeae transmission in populations of heterosexual men and women (HMW) and MSM. We parameterized the model using sexual behavior data and calibrated it to N. gonorrhoeae prevalence and incidence data. In the model, antibiotic-resistant N. gonorrhoeae spread with a median rate of 0.88 y-1 in HMW and 3.12 y-1 in MSM. These rates correspond to median doubling times of 9 (HMW) and 3 (MSM) months. Assuming no fitness costs, the model shows the difference in the host population's treatment rate rather than the difference in the number of sexual partners explains the differential spread of resistance. As higher treatment rates result in faster spread of antibiotic resistance, treatment recommendations for N. gonorrhoeae should carefully balance prevention of infection and avoidance of resistance spread.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibiotics are becoming increasingly prevalent in bacterial communities due to clinical and agricultural misuse and overuse in their environment. As exposure increases, so does the incidence of microbial resistance. Such is the case with bacterial resistance to tetracyclines, a phenotype often acquired through the horizontal gene transfer of tet genes between bacteria. The objective of this project was to analyze the bacterial diversity of tet resistance genes in soil from Miami-Dade County. Bacterial isolates were Gram-stained and the Kirby-Bauer antibiotic disk diffusion test was performed to determine each bacterium’s degree of resistance. The 16S rRNA gene from antibiotic-resistant isolates was amplified by PCR and sequenced to identify the isolates. All isolates’ tet genes were amplified by multiplex PCR, sequenced, and compared. Among eight isolates, three distinct species were positively identified based on their 16S rRNA sequences and four distinct tet genes were identified, though all tested susceptible to tetracycline via the Kirby-Bauer test. This project clarifies some aspects of the ecology of antibiotic resistance genes, their natural ecological function and the potential for the expansion of intrinsic multi-antibiotic resistance into new ecosystems and/or hosts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the genetic background of bla(TEM-4) and the complete sequence of pRYC11::bla(TEM-4), a mosaic plasmid that is highly similar to pKpQIL-like variants, predominant among TEM-4 producers in a Spanish hospital (1990 to 2004), which belong to Klebsiella pneumoniae and Escherichia coli high-risk clones responsible for the current spread of different antibiotic resistance genes. Predominant populations of plasmids and host adapted clonal lineages seem to have greatly contributed to the spread of resistance to extended-spectrum cephalosporins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of eighty-one Escherichia coli isolates belonging to forty-three different serotypes including several pathogenic strains such as enterotoxigenic E. coli (ETEC), enterohaemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC) and uropathogenic E. coli (UPEC) isolated from Cochin estuary between November 2001 and October 2002 were tested against twelve antibiotics to determine the prevalence of multiple antibiotic resistance (MAR) and antimicrobial resistance profiles as a measure of high risk source of contamination. The results revealed that more than 95% of the isolates were multiple antibiotic resistant (resistant to more than three antibiotics). The MAR indexing of the isolates showed that all these strains originated from high risk source of contamination. The incidence of multiple antibiotic resistant E. coli especially the pathogenic strains in natural waters will pose a serious threat to human population

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary habitat of Salmonella is the gastrointestinal tract of animals and they are discharged into the water bodies through the feces. Aquatic animals act as asymptomatic reservoirs of a wide range of Salmonella serotypes. The inevitable delay in the detection of Salmonella contamination and the low sensitivity of the conventional methods is a serious issue in the seafood industry. Due to the indiscriminate use, the antibiotics are finally accumulated in the aquatic environment which provides the required antibiotic stress for the emergence of more and more antibiotic resistant phenotypes ofSalmonella. Several genetic determinants like integrons, genomic islands etc. play their role in acquisition and reshuffling of antibiotic resistance genes. A large number of virulence determinants are required for Salmonella pathogenicity. The virulence potential of Salmonella is determined, to some extent, by the presence of phages or phage mediated genes in the bacterial genome. There is much intra-serotype polymorphism in Salmonella and epidemiological studies rely on genetic resemblance of the isolated strains. Proper identification of the strain employing the traditional and molecular techniques is a prerequisite for accurate epidemiological studies (Soto et al., 2000). In this context, a study was undertaken to determine the prevalence of different Salmonella serotypes in seafood and to characterize them

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concurrent analysis of antibiotic resistance of colonising and invasive Streptococcus pneumoniae gives a more accurate picture than looking at either of them separately. Therefore, we analysed 2,129 non-invasive and 10,996 invasive pneumococcal isolates from Switzerland from 2004 to 2014, which spans the time before and after the introduction of the heptavalent (PCV7) and 13-valent (PCV13) conjugated pneumococcal polysaccharide vaccines. Serotype/serogroup information was linked with all antibiotic resistance profiles. During the study period, the proportion of non-susceptible non-invasive and invasive isolates significantly decreased for penicillin, ceftriaxone, erythromycin and trimethoprim/sulfamethoxazole (TMP-SMX). This was most apparent in non-invasive isolates from study subjects younger than five years (penicillin (p = 0.006), erythromycin (p = 0.01) and TMP-SMX (p = 0.002)). Resistant serotypes/serogroups included in PCV7 and/or PCV13 decreased and were replaced by non-PCV13 serotypes (6C and 15B/C). Serotype/serogroup-specific antibiotic resistance rates were comparable between invasive and non-invasive isolates. Adjusted odds ratios of serotype/serogroup-specific penicillin resistance were significantly higher in the west of Switzerland for serotype 6B (1.8; 95% confidence interval (CI): 1.4-4.8), 9V (3.4; 95% CI: 2.0-5.7), 14 (5.3; 95% CI: 3.8-7.5), 19A (2.2; 95% CI: 1.6-3.1) and 19F (3.1; 95% CI: 2.1-4.6), probably due to variations in the antibiotic consumption.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Enterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance. The Coomera River is a main water source for the Pimpama-Coomera watershed and is located in South East Queensland, Australia, which is used intensively for agriculture and recreational purposes. This study investigated the diversity of E. faecalis and E. faecium using Single Nucleotide Polymorphisms (SNPs) and associated antibiotic resistance profiles. RESULTS: Total enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and human-specific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6')-aph(2') gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp5 gene. Vancomycin resistance was not detected in any of the isolates. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium. CONCLUSIONS: The distribution of E. faecalis and E. faecium genotypes is highly diverse in the Coomera River. The SNP genotyping method is rapid and robust and can be applied to study the diversity of E. faecalis and E. faecium in waterways. It can also be used to test for human-related and human-specific enterococci in water. The resolving power can be increased by including antibiotic-resistant profiles which can be used as a possible source tracking tool. This warrants further investigation.