966 resultados para anti-apoptosis
Resumo:
Atmospheric pressure gas plasma (AGP) generates reactive oxygen species (ROS) that induce apoptosis in cultured cancer cells. The majority of cancer cells develop a ROS-scavenging anti-oxidant system regulated by Nrf2, which confers resistance to ROS-mediated cancer cell death. Generation of ROS is involved in the AGP-induced cancer cell death of several colorectal cancer cells (Caco2, HCT116 and SW480) by activation of ASK1-mediated apoptosis signaling pathway without affecting control cells (human colonic sub-epithelial myofibroblasts; CO18, human fetal lung fibroblast; MRC5 and fetal human colon; FHC). However, the identity of an oxidase participating in AGP-induced cancer cell death is unknown. Here, we report that AGP up-regulates the expression of Nox2 (NADPH oxidase) to produce ROS. RNA interference designed to target Nox2 effectively inhibits the AGP-induced ROS production and cancer cell death. In some cases both colorectal cancer HT29 and control cells showed resistance to AGP treatment. Compared to AGP-sensitive Caco2 cells, HT29 cells show a higher basal level of the anti-oxidant system transcriptional regulator Nrf2 and its target protein sulfiredoxin (Srx) which are involved in cellular redox homeostasis. Silencing of both Nrf2 and Srx sensitized HT29 cells, leads to ROS overproduction and decreased cell viability. This indicates that in HT29 cells, Nrf2/Srx axis is a protective factor against AGP-induced oxidative stress. The inhibition of Nrf2/Srx signaling should be considered as a central target in drug-resistant colorectal cancer treatments.
Resumo:
Increased numbers of apoptotic neutrophils are found in SLE, related to disease activity and levels of anti-dsDNA antibody. The mechanism of increased apoptosis is not clear, but anti-dsDNA antibody has been shown to induce apoptosis in neutrophils from normal subjects and in certain cell lines. In this study, polyclonal anti-dsDNA antibody was isolated from the serum of a patient with active SLE, and was shown to substantially accelerate apoptosis in neutrophils from SLE patients as compared with neutrophils from healthy control or rheumatoid arthritis subjects.
Resumo:
MicroARN (miARN) ont récemment émergé comme un acteur central du gène réseau de régulation impliqués dans la prise du destin cellulaire. L'apoptose, un actif processus, par lequel des cellules déclenchent leur auto-destruction en réponse à un signal, peut être contrôlé par les miARN. Il a également été impliqué dans une variété de maladies humaines, comme les maladies du cœur, et a été pensé comme une cible pour le traitement de la maladie. Tanshinone IIA (TIIA), un monomère de phenanthrenequinones utilisé pour traiter maladies cardiovasculaires, est connu pour exercer des effets cardioprotecteurs de l'infarctus du myocarde en ciblant l'apoptose par le renforcement de Bcl-2 expression. Pour explorer les liens potentiels entre le miARN et l'action anti-apoptotique de TIIA, nous étudié l'implication possible des miARN. Nous avons constaté que l'expression de tous les trois membres de la famille miR-34, miR-34a, miR-34b et miR-34c ont été fortement régulée à la hausse après l'exposition soit à la doxorubicine, un agent endommageant l'ADN ou de pro-oxydant H2O2 pendant 24 heures. Cette régulation à la hausse causé significativement la mort cellulaire par apoptose, comme déterminé par fragmentation de l'ADN, et les effets ont été renversés par les ARNs antisens de ces miARN. Le prétraitement des cellules avec TIIA avant l'incubation avec la doxorubicine ou H2O2 a empêché surexpression de miR-34 et a réduit des apoptose. Nous avons ensuite établi BCL2L2, API5 et TCL1, en plus de BCL2, comme les gènes nouveaux cibles pour miR-34. Nous avons également élucidé que la répression des ces gènes par MiR-34 explique l'effet proapoptotique dans les cardiomyocytes. Ce que la régulation positive de ces gènes par TIIA realisée par la répression de l'expression de miR-34 est probable le mécanisme moléculaire de son effet bénéfique contre ischémique lésions cardiaques.
Resumo:
Advanced prostate cancer is not curable by current treatment strategies indicating a significant need for new chemotherapeutic options. Highly substituted ansatitanocene compounds have shown promising cytotoxic activity in a range of cancers. The objectives of this study are to examine the effects of these titanocene compounds on prostate cancer cells. Prostate cell lines were treated with three novel titanocene compounds and compared to titanocene dichloride and cisplatin. Percent apoptosis, viability and cell cycle were assessed using propidium iodide DNA incorporation with flow cytometry. Cytochrome C was assessed by western blotting of mitochondrial and cytoplasmic fractions. Apoptosis Inducing Factor was assessed by confocal microscopy. These novel compounds induced more apoptosis compared to cisplatin in a dose dependent manner. Compound Y had the most significant effect on cell cycle and apoptosis. Despite the release of cytochrome C from the mitochondrial fraction there was no inhibition of apoptosis with the pan caspase inhibitor, ZVAD-FMK. AIF was shown to translocate from the cytosol to the nucleus mediating a caspase independent cell death. Bcl-2 over expressing PC-3 cells, which were resistant to cisplatin induced apoptosis, underwent apoptosis following treatment with all the titanocene compounds. This study demonstrates possible mechanisms by which these novel titanocene compounds can mediate their apoptotic effect in vitro. The fact that they can induce more apoptosis than cisplatin in advanced cancer cell lines would confer an advantage over cisplatin. They represent exciting new agents with future potential for the treatment of advanced prostate cancer.
Resumo:
To gain insights into the molecular mechanisms underlying early host responses to HIV in the CD4(+) T cell target population, we examined gene expression in CD4(+) T cells isolated 24 h after ex vivo HIV infection of lymphocyte aggregate cultures derived from human tonsils. Gene profiling showed a distinct up-regulation of genes related to immune response and response to virus, notably of IFN-stimulated genes (ISGs), irrespective of the coreceptor tropism of the virus. This mostly IFN-alpha-dependent gene signature suggested the involvement of plasmacytoid dendritic cells, a principal component of the antiviral immune response. Indeed, depletion of plasmacytoid dendritic cells before HIV inoculation abrogated transcriptional up-regulation of several ISGs and resulted in increased levels of HIV replication. Treatment with a blocking anti-IFN-alphaR Ab yielded increased HIV replication; conversely, HIV replication was decreased in pDC-depleted cultures treated with IFN-alpha. Among up-regulated ISGs was also TRAIL, indicating a potential role of the IFN signature in apoptosis. However, a blocking anti-TRAIL Ab did not abrogate apoptosis of CD4(+) T cells in CXCR4-tropic HIV-infected cultures, suggesting the involvement of pathways other than TRAIL mediated. We conclude that acute HIV infection of lymphoid tissue results in up-regulation of ISGs in CD4(+) T cells, which induces an anti-HIV state but not apoptosis.
Resumo:
Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^
Resumo:
The inhibitor of apoptosis (IAP) family of anti-apoptotic proteins regulate programmed cell death and/or apoptosis. One such protein, X-linked IAP (XIAP), inhibits the activity of the cell death proteases, caspase-3, -7, and -9. In this study, using constitutively active mutants of caspase-3, we found that XIAP promotes the degradation of active-form caspase-3, but not procaspase-3, in living cells. The XIAP mutants, which cannot interact with caspase-3, had little or no activity of promoting the degradation of caspase-3. RING finger mutants of XIAP also could not promote the degradation of caspase-3. A proteasome inhibitor suppressed the degradation of caspase-3 by XIAP, suggesting the involvement of a ubiquitin-proteasome pathway in the degradation. An in vitro ubiquitination assay revealed that XIAP acts as a ubiquitin-protein ligase for caspase-3. Caspase-3 was ubiquitinated in the presence of XIAP in living cells. Both the association of XIAP with caspase-3 and the RING finger domain of XIAP were essential for ubiquitination. Finally, the RING finger mutants of XIAP were less effective than wild-type XIAP at preventing apoptosis induced by overexpression of either active-form caspase-3 or Fas. These results demonstrate that the ubiquitin-protein ligase activity of XIAP promotes the degradation of caspase-3, which enhances its anti-apoptotic effect.
Resumo:
Signal transduction initiated by crosslinking of antigen-specific receptors on T- and B-lymphoma cells induces apoptosis. In T-lymphoma cells, such crosslinking results in upregulation of the APO-1 ligand, which then interacts with induced or constitutively expressed APO-1, thereby triggering apoptosis. Here we show that crosslinking the membrane immunoglobulin on human lymphoma cells (Daudi) (that constitutively express APO-1) does not induce synthesis of APO-1 ligand. Further, a noncytotoxic fragment of anti-APO-1 antibody that blocks T-cell-receptor-mediated apoptosis in T-lymphoma cells does not block anti-mu-induced apoptosis. Hence, in B-lymphoma cells, apoptosis induced by signaling via membrane IgM is not mediated by the APO-1 ligand.
Resumo:
The HS1 protein is one of the major substrates of non-receptor-type protein-tyrosine kinases and is phosphorylated immediately after crosslinking of the surface IgM on B cells. The mouse B-lymphoma cell line WEHI-231 is known to undergo apoptosis upon crosslinking of surface IgM by anti-IgM antibodies. Variants of WEHI-231 that were resistant to anti-IgM-induced apoptosis expressed dramatically reduced levels of HS1 protein. Expression of the human HS1 protein from an expression vector introduced into one of the variant cell lines restored the sensitivity of the cells to apoptosis induced by surface IgM crosslinking. These results suggest that HS1 protein plays a crucial role in the B-cell antigen receptor-mediated signal transduction pathway that leads to apoptosis.
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastrointestinal cancer cell lines. Similar actions on normal gastric epithelial cells could contribute to NSAID gastropathy. The present work therefore compared the actions of diclofenac, ibuprofen, indomethacin, and the cyclo-oxygenase-2 selective inhibitor, NS-398, on a primary culture of guinea-pig gastric mucous epithelial cells. Cell number was assessed by staining with crystal violet. Apoptotic activity was determined by condensation and fragmentation of nuclei and by assay of caspase-3-like activity. Necrosis was evaluated from release of cellular enzymes. Ibuprofen (250 μM for 24 h) promoted cell loss, and apoptosis, under both basal conditions and when apoptosis was increased by 25 μM N-Hexanoyl-D-sphingosine (C6-ceramide). Diclofenac (250 μM for 24 h) reduced the proportion of apoptotic nuclei from 5.2 to 2.1%, and caused inhibition of caspase-3-like activity, without causing necrosis under basal conditions. No such reduction in apoptotic activity was evident in the presence of 25 μM C6-ceramide. The inhibitory effect of diclofenac on basal caspase-3-like activity was also exhibited by the structurally similar mefenamic and flufenamic acids (1–250 μM), but not by niflumic acid. Inhibition of superoxide production by the cells increased caspase-3-like activity, but the inhibitory action of diclofenac on caspase activity remained. Diclofenac did not affect superoxide production. Diclofenac inhibited caspase-3-like activity in cell homogenates and also inhibited human recombinant caspase-3. In conclusion, NSAIDs vary in their effect on apoptotic activity in a primary culture of guinea-pig gastric mucous epithelial cells, and the inhibitory effect of diclofenac on basal apoptosis could involve an action on caspase activity.
Resumo:
Introduction: Malignant pleural mesothelioma (MPM) is a rapidly fatal malignancy that is increasing in incidence. The caspase 8 inhibitor FLIP is an anti-apoptotic protein over-expressed in several cancer types including MPM. The histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) is currently being evaluated in relapsed mesothelioma. We examined the roles of FLIP and caspase 8 in regulating SAHA-induced apoptosis in MPM. Methods: The mechanism of SAHA-induced apoptosis was assessed in 7 MPM cell lines and in a multicellular spheroid model. SiRNA and overexpression approaches were used, and cell death was assessed by flow cytometry, Western blotting and clonogenic assays. Results: RNAi-mediated FLIP silencing resulted in caspase 8-dependent apoptosis in MPM cell line models. SAHA potently down-regulated FLIP protein expression in all 7 MPM cell lines and in a multicellular spheroid model of MPM. In 6/7 MPM cell lines, SAHA treatment resulted in significant levels of apoptosis induction. Moreover, this apoptosis was caspase 8-dependent in all six sensitive cell lines. SAHA-induced apoptosis was also inhibited by stable FLIP overexpression. In contrast, down-regulation of HR23B, a candidate predictive biomarker for HDAC inhibitors, significantly inhibited SAHA-induced apoptosis in only 1/6 SAHA-sensitive MPM cell lines. Analysis of MPM patient samples demonstrated significant inter-patient variations in FLIP and caspase 8 expressions. In addition, SAHA enhanced cisplatin-induced apoptosis in a FLIP-dependent manner. Conclusions: These results indicate that FLIP is a major target for SAHA in MPM and identifies FLIP, caspase 8 and associated signalling molecules as candidate biomarkers for SAHA in this disease. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.
Resumo:
Bcl-x(l) and Bax play important roles in the regulation of apoptosis. This study investigated the involvement of the mitochondrial death pathway and the role of Bcl-x(l) and Bax in the escape from apoptosis after prolonged serum deprivation in Madin-Darby canine kidney (MDCK) cells. Low level apoptosis and basal activity of the mitochondrial death pathway were detectable in normal cell growth. In serum deprivation, mitosis was partially suppressed, and the mitochondrial activity was stimulated. The level of apoptosis continuously rose over 48 h. This rise was concomitant with the increasing presence of cytochrome c in cytosol. However, both apoptosis and cytosolic cytochrome c fell dramatically at 72 h. Elevation of whole cell Bcl-x(l) and redistribution of Bcl-x(l) protein from cytosol to the membrane at 48 h and 72 h was observed. Redistribution of Bax protein from the membrane to cytosol occurred at 24 h, and remained steady to 72 h. Bax/Bcl-x(l) coimmunoprecipitation by anti-Bax antibody showed reduced Bax/Bcl-x(l) interaction at the membrane at 72 h, but not at 24 or 48 h. These results suggest that apoptosis upon serum withdrawal results from the leakage of cytochrome c to cytosol. Amelioration of the leakage of cytochrome c and apoptosis requires not only the increase of Bcl-x(l)/Bax ratio, but also the release of Bcl-x(l) from Bax at the membrane.
Resumo:
Nowadays, the emergence of resistance to the current available chemotherapeutic drugs by cancer cells makes the development of new agents imperative. The skin secretion of amphibians is a natural rich source of antimicrobial peptides (AMP), and researchers have shown that some of these wide spectrum molecules are also toxic to cancer cells. The aim of this study was to verify a putative anticancer activity of the AMP pentadactylin isolated for the first time from the skin secretion of the frog Leptodactylus labyrinthicus and also to study its cytotoxic mechanism to the murine melanoma cell line B16F10. The results have shown that pentadactylin reduces the cell viability of B16F10 cells in a dose-dependent manner. It was also cytotoxic to normal human fibroblast cells; nevertheless, pentadactylin was more potent in the first case. The studies of action mechanism revealed that pentadactylin causes cell morphology alterations (e.g., round shape and shrinkage morphology), membrane disruption, DNA fragmentation, cell cycle arrest at the S phase, and alteration of mitochondrial membrane potential, suggesting that B16F10 cells die by apoptosis. The exact mechanism that causes reduction of cell viability and cytotoxicity after treatment with pentadactylin is still unknown. In conclusion, as cancer cells become resilient to death, it is worthwhile the discovery of new drugs such as pentadactylin that induces apoptosis.
Resumo:
Aims: Caveolin-1 (cav1) is reported to have both cell survival and pro-apoptotic characteristics. This may be explained by its localisation or phosphorylation in injured cells. This study investigated the role of cav1 in kidney cells of different nephron origin and developmental state after oxidative stress. Methods: Renal MCDK distal tubular, HK2 proximal tubular epithelial cells and HEK293T renal embryonic cells were treated with 1mM hydrogen peroxide. Apoptosis, loss of cell adhesion, and cell survival were compared with expression of cav1 in its non-phosphorylated and phosphorylated (p-cav1) forms. Cav1 was transfected into the HEK293T cells, or caveolae were disrupted with filipin or nystatin in HK2 cells, to investigate functions of cav1 and p-cav1. Results: Oxidative stress induced more apoptosis in HK2s than MDCKs (p<0.05). HK2s had lower endogenous cav1 and p-cav1 than MDCKs (p<0.05). Both cell lines had increased p-cav1, but not cav1, with oxidative stress. This increase was greatest in MDCKs (p<0.01). Cav1 was located mainly in the plasma membrane of untreated cells and translocated to the cytoplasm with oxidative stress in both cell lines, more so in MDCKs. Disruption of caveolae caused cytoplasmic translocation of cav1 in HK2s, but did not alter high levels of oxidative stress-induced apoptosis. When HEK293Ts lacking endogenous cav1 were transfected with cav1, oxidant-induced apoptosis and loss of cell adhesion was decreased (p<0.01), and p-cav1 was induced by treatment. Conclusion: Cav1 expression and localisation in kidney cells is not anti-apoptotic, but increased expression of p-cav1 may promote cell survival after oxidative stress. © 2008 Royal College of Pathologists of Australasia.