759 resultados para anthropomorphic phantom


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECT Monoenergetic imaging with dual-energy CT has been proposed to reduce metallic artifacts in comparison with conventional polychromatic CT. The purpose of this study is to systematically evaluate and define the optimal dual-energy CT imaging parameters for specific cervical spinal implant alloy compositions. METHODS Spinal fixation rods of cobalt-chromium or titanium alloy inserted into the cervical spine section of an Alderson Rando anthropomorphic phantom were imaged ex vivo with fast-kilovoltage switching CT at 80 and 140 peak kV. The collimation width and field of view were varied between 20 and 40 mm and medium to large, respectively. Extrapolated monoenergetic images were generated at 70, 90, 110, and 130 kiloelectron volts (keV). The standard deviation of voxel intensities along a circular line profile around the spine was used as an index of the magnitude of metallic artifact. RESULTS The metallic artifact was more conspicuous around the fixation rods made of cobalt-chromium than those of titanium alloy. The magnitude of metallic artifact seen with titanium fixation rods was minimized at monoenergies of 90 keV and higher, using a collimation width of 20 mm and large field of view. The magnitude of metallic artifact with cobalt-chromium fixation rods was minimized at monoenergies of 110 keV and higher; collimation width or field of view had no effect. CONCLUSIONS Optimization of acquisition settings used with monoenergetic CT studies might yield reduced metallic artifacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: A pregnant woman was referred for post-operative radiotherapy of a malignant schwannoma in the head and neck region. A best-treatment plan was devised in order to minimize the fetal dose. MATERIAL AND METHODS: The fetal dose resulting from radiological examinations was determined according to international protocols, that resulting from radiotherapy was calculated according to Recommendation 36 of the American Association of Physicists in Medicine (AAPM) Task Group. Pre-treatment dosimetry was performed with an anthropomorphic phantom. Several alternative treatment plans were evaluated. The use of a multileaf collimator (MLC) and a virtual wedge (VW) was compared to cerrobend blocks (CB) and physical wedge (PW). In-vivo dosimetry was performed using a vaginal probe containing thermoluminescent dosimeters (TLD). RESULTS: The total fetal dose resulting from diagnostic and radiotherapy procedures was estimated to be 36 mGy. The technique based on MLC and VW was elected for patient treatment. Measurements for this configuration resulted in afetal dose reduction of 82%. The shielding of the patient's abdomen further reduced the fetal dose by 42%. CONCLUSION: The use of VW and MLC for the treatment of a pregnant woman is highly recommended. Each case should be individually studied with pre-treatment and in-vivo dosimetry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whole-body counting is a technique of choice for assessing the intake of gamma-emitting radionuclides. An appropriate calibration is necessary, which is done either by experimental measurement or by Monte Carlo (MC) calculation. The aim of this work was to validate a MC model for calibrating whole-body counters (WBCs) by comparing the results of computations with measurements performed on an anthropomorphic phantom and to investigate the effect of a change in phantom's position on the WBC counting sensitivity. GEANT MC code was used for the calculations, and an IGOR phantom loaded with several types of radionuclides was used for the experimental measurements. The results show a reasonable agreement between measurements and MC computation. A 1-cm error in phantom positioning changes the activity estimation by >2%. Considering that a 5-cm deviation of the positioning of the phantom may occur in a realistic counting scenario, this implies that the uncertainty of the activity measured by a WBC is ∼10-20%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Late toxicities such as second cancer induction become more important as treatment outcome improves. Often the dose distribution calculated with a commercial treatment planning system (TPS) is used to estimate radiation carcinogenesis for the radiotherapy patient. However, for locations beyond the treatment field borders, the accuracy is not well known. The aim of this study was to perform detailed out-of-field-measurements for a typical radiotherapy treatment plan administered with a Cyberknife and a Tomotherapy machine and to compare the measurements to the predictions of the TPS. MATERIALS AND METHODS: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The measured dose distributions from 6 MV intensity-modulated treatment beams for CyberKnife and TomoTherapy machines were compared to the dose calculations from the TPS. RESULTS: The TPS are underestimating the dose far away from the target volume. Quantitatively the Cyberknife underestimates the dose at 40cm from the PTV border by a factor of 60, the Tomotherapy TPS by a factor of two. If a 50% dose uncertainty is accepted, the Cyberknife TPS can predict doses down to approximately 10 mGy/treatment Gy, the Tomotherapy-TPS down to 0.75 mGy/treatment Gy. The Cyberknife TPS can then be used up to 10cm from the PTV border the Tomotherapy up to 35cm. CONCLUSIONS: We determined that the Cyberknife and Tomotherapy TPS underestimate substantially the doses far away from the treated volume. It is recommended not to use out-of-field doses from the Cyberknife TPS for applications like modeling of second cancer induction. The Tomotherapy TPS can be used up to 35cm from the PTV border (for a 390 cm(3) large PTV).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Des avancements récents dans le domaine de la radiothérapie stéréotaxique permettent à un nombre grandissant de patients de recevoir un traitement non-invasif pour le cancer du foie. L’une des méthodes utilisées consiste à suivre le mouvement de la tumeur à l’aide de marqueurs radio-opaques insérés dans le foie grâce au système de suivi de l’appareil de traitement CyberKnife. Or, l’insertion de ces marqueurs est parfois trop invasive pour certains patients souffrant de maladie du foie avancée. Ces patients ont souvent un historique de chirurgie qui permet d’utiliser les agrafes chirurgicales déjà présentes dans leur foie dans le but de suivre leur tumeur. Cette nouvelle approche au traitement des tumeurs du foie est investiguée dans cette étude afin d’en déterminer les paramètres optimaux pour une meilleure pratique thérapeutique. L’expérimentation sur fantôme anthropomorpique a permis de conclure que le contraste des agrafes dans leur milieu augmente lors de l’augmentation des paramètres d’imagerie (kilovoltage et milliampérage de l’appareil de radiographie). D’autre part, l’erreur commise par le système CyberKnife dans l’identification des agrafes pour le suivi a été mesurée comme étant supérieure à celle sur l’emplacement des marqueurs radiologiques de platine (environ 1 mm contre moins de 1 mm). Cette erreur est considérée comme acceptable dans le contexte de ce type de traitement particulier. Enfin, une analyse gamma de l’impact dosimétrique du suivi par agrafes a montré qu’il était approximativement équivalent à celui par marqueurs de platine. De ces observations on conclue que le traitement des tumeurs du foie avec suivi des agrafes chirurgicales est valide et peut être amélioré suivant certaines recommandations cliniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The daily-to-day of medical practice is marked by a constant search for an accurate diagnosis and therapeutic assessment. For this purpose the doctor serves up a wide variety of imaging techniques, however, the methods using ionizing radiation still the most widely used because it is considered cheaper and above all very efficient when used with control and quality. The optimization of the risk-benefit ratio is considered a major breakthrough in relation to conventional radiology, though this is not the reality of computing and digital radiology, where Brazil has not established standards and protocols for this purpose. This work aims to optimize computational chest radiographs (anterior-posterior projection-AP). To achieve this objective were used a homogeneous phantoms that simulate the characteristics of absorption and scattering of radiation close to the chest of a patient standard. Another factor studied was the subjective evaluation of image quality, carried out by visual grading assessment (VGA) by specialists in radiology, using an anthropomorphic phantom to identify the best image for a particular pathology (fracture or pneumonia). Quantifying the corresponding images indicated by the radiologist was performed from the quantification of physical parameters (Detective Quantum Efficiency - DQE, Modulation Transfer Function - MTF and Noise Power Spectrum - NPS) using the software MatLab®. © 2013 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paediatric diagnostic radiology can be considered as a separate specialty and with distinct characteristics of the radiology applied in adult patients. This in reason of the variability in the anatomical structures size and bigger sensitivity of tissues. The literature present in its majority methodologies for segmentation and tissue classification in adult patients, and works on tissue quantification are rare. This work had for objective the development of a biological tissue classifier and quantifier algorithm, from histograms, and that converts the quantified average thickness of these tissues for its respective simulator materials. The results will be used in the optimization process of paediatrics images, in future works, since these patients are frequently over exposed to the radiation in the repeated attempts of if getting considered good quality radiographic images. The developed algorithm was capable to read and store the name of all the archives, in the operational system, to filter artifacs, to count and quantify each biological tissues from the histogram of the examination, to obtain the biological tissues average thicknesses and to convert this value into its respective simulator material. The results show that it is possible to distinguish bone, soft, fat and pulmonary tissues from histograms of tomographic examinations of thorax. The quantification of the constituent materials of anthropomorphic phantom made by the algorithm, compared with the data of literature shows that the biggest difference was of 21,6% for bone. However, the literature shows that variations of up to 30% in bone thickness do not influence of significant form in the radiographic image quality. The average thicknesses of biological tissues, quantified for paediatrics patients, show that one phantom can simulate patients with distinct DAP ranges, since variations... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the present study was to optimize a radiographic technique for hand examinations using a computed radiography (CR) system and demonstrate the potential for dose reductions compared with clinically established technique. An exposure index was generated from the optimized technique to guide operators when imaging hands. Homogeneous and anthropomorphic phantoms that simulated a patient's hand were imaged using a CR system at various tube voltages and current settings (40-55 kVp, 1.25-2.8 mAs), including those used in clinical routines (50 kVp, 2.0 mAs) to obtain an optimized chart. The homogeneous phantom was used to assess objective parameters that are associated with image quality, including the signal difference-to-noise ratio (SdNR), which is used to define a figure of merit (FOM) in the optimization process. The anthropomorphic phantom was used to subjectively evaluate image quality using Visual Grading Analysis (VGA) that was performed by three experienced radiologists. The technique that had the best VGA score and highest FOM was considered the gold standard (GS) in the present study. Image quality, dose and the exposure index that are currently used in the clinical routine for hand examinations in our institution were compared with the GS technique. The effective dose reduction was 67.0%. Good image quality was obtained for both techniques, although the exposure indices were 1.60 and 2.39 for the GS and clinical routine, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To determine the radiation dose delivered to organs during standard computed tomographic (CT) examination of the trunk. MATERIALS AND METHODS: In vivo locations and sizes of specific body organs were determined from CT images of patients who underwent examinations. The corresponding CT investigations were then simulated on an anthropomorphic phantom. The resulting doses were measured at 70 different sites inside the phantom by using thermoluminescent dosimeters. On the basis of measurements of free-in-air air kerma at the rotation axis of the CT gantry, conversion factors were calculated so that measurements could be used with different models of CT equipment. RESULTS: Starting from the dose values recorded, the mean organ doses were determined for 21 organs. The skin received 22-36 mGy; the lungs, less than 1-18 mGy; the kidneys, 7-24 mGy; and the ovaries, less than 1-19 mGy, depending on the type of CT examination performed. CONCLUSION: These values are high compared with other x-ray examinations and should be minimized as much as possible. The number of tomographic sections obtained should be kept as low as possible according to diagnostic need.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various conventional and modern fluoroscope units had been examined with an anthropomorphic phantom to determine the applied average organ doses. The aim of our investigation was to compare these doses with those normally delivered to the patients during a conventional X-ray examination of the thorax. As was to be expected, the doses resulting from conventional fluoroscopic units are much higher than the doses from modern units. As shown by means of our measurements, the efforts of advanced technology permit to reduce the dose rate up to a factor of 30. I.e., the doses resulting from modern fluoroscopic units are even smaller than the doses received during a conventional thoracic X-ray examination, what means a great improvement for this examination technic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virtual colonoscopy (VC) is a minimally invasive means for identifying colorectal polyps and colorectal lesions by insufflating a patient’s bowel, applying contrast agent via rectal catheter, and performing multi-detector computed tomography (MDCT) scans. The technique is recommended for colonic health screening by the American Cancer Society but not funded by the Centers for Medicare and Medicaid Services (CMS) partially because of potential risks from radiation exposure. To date, no in‐vivo organ dose measurements have been performed for MDCT scans; thus, the accuracy of any current dose estimates is currently unknown. In this study, two TLDs were affixed to the inner lumen of standard rectal catheters used in VC, and in-vivo rectal dose measurements were obtained within 6 VC patients. In order to calculate rectal dose, TLD-100 powder response was characterized at diagnostic doses such that appropriate correction factors could be determined for VC. A third-order polynomial regression with a goodness of fit factor of R2=0.992 was constructed from this data. Rectal dose measurements were acquired with TLDs during simulated VC within a modified anthropomorphic phantom configured to represent three sizes of patients undergoing VC. The measured rectal doses decreased in an exponential manner with increasing phantom effective diameter, with R2=0.993 for the exponential regression model and a maximum percent coefficient of variation (%CoV) of 4.33%. In-vivo measurements yielded rectal doses ranged from that decreased exponentially with increasing patient effective diameter, in a manner that was also favorably predicted by the size specific dose estimate (SSDE) model for all VC patients that were of similar age, body composition, and TLD placement. The measured rectal dose within a younger patient was favorably predicted by the anthropomorphic phantom dose regression model due to similarities in the percentages of highly attenuating material at the respective measurement locations and in the placement of the TLDs. The in-vivo TLD response did not increase in %CoV with decreasing dose, and the largest %CoV was 10.0%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. ^ The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. ^ The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100. ^