991 resultados para anteroventral third ventricle (AV3V) region


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central injection of clonidine (an alpha-2-adrenoceptor agonist) in conscious normotensive rats produces hypertensive responses and bradycardia. The present study was performed to investigate the effect of electrolytic lesions in the anteroventral third ventricle (AV3V) region or in the lateral hypothalamus (LH) on the pressor and bradycardic responses induced by central clonidine in rats. Mean arterial pressure and heart rate were recorded in sham or AV3V-lesioned rats with cerebral stainless steel cannulae implanted into the lateral cerebral ventricle (ICV) or LH. and in sham or bilateral LH-lesioned rats with cannulae-implanted ICV. The injection of clonidine (40 nmol) ICV or into the LH of sham rats produced a pressor response (37 +/- 2-48 +/- 3 mmHg) and bradycardia (-45 +/- 10--93 +/- 6 bpm). After AV3V-lesion (3 and 12 days) or LH-lesion (3 days) the pressor response was abolished and a small hypotensive response was induced by the injection of clonidine (-1 +/- 3--16 +/- 3 mmHg). The bradycardia (-27 +/- 6--57 +/- 11 bpm) was reduced, but not abolished by the lesions. These results show that the AV3V region and LH are important cerebral structures that participate in the excitatory pathways involved in the pressor response to central clonidine in rats. They also suggest that, in the absence of these pressor pathways, the hypotensive responses to central clonidine may appear in conscious rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the effects of electrolytic lesions of the anteroventral third ventricle (AV3V) region and of the medial forebrain bundle (MFB) on the pressor response induced by bilateral carotid occlusion (BCO) in conscious intact and aortic baroreceptor-denervated (AD) rats were investigated. In intact control rats, BCO during 60 s produced a pressor response that could be divided into an early response (ER = 50 +/- 3 mmHg) that reachs a peak during the first 20 s and a sustained late response (LR), smaller than ER (32 +/- 2 mmHg), observed during the last 30 s. In intact-innervated rats, AV3V lesion (2 days) reduced ER (22 +/- 3 mmHg) and LR (16 +/- 2 mmHg), whereas the bilateral MFB lesions (6 days) mainly reduced LR (9 +/- 1 mmHg). Rats with simultaneous lesion of both the AV3V region and the MFB showed additional reduction of the ER (15 +/- 3 mmHg), but not LR (11 +/- 1 mmHg) when compared to the effect of MFB lesions alone. Compared to the AV3V lesion alone, LR but not ER was reduced in rats with a double lesion. In sham-lesioned rats, AD induced a significant increase in the pressor response to BCO (ER = 75 +/- 4 mmHg and LR = 65 +/- 3 mmHg) when compared to intact controls. A similar reduction in ER and LR was observed in AD rats after AV3V (ER = 35 +/- 3 mmHg and LR = 40 +/- 2 mmHg) and MFB (ER = 49 +/- 6 mmHg and LR = 41 +/- 5 mmHg) lesions alone or combined (ER = 40 +/- 6 mmHg and LR = 35 +/- 7 mmHg). The results showed that simultaneous lesions of both the AV3V region and the MFB practically abolished the pressor response to BCO. They also suggested that aortic baroreceptor activity plays a significant role in the effects of AV3V and MFB lesions on the pressor response to BCO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study we investigated the effect of anteroventral third ventricle (AV3V) lesion on pressor, dipsogenic, natriuretic and kaliuretic responses induced by the injection of carbachol (a cholinergic agonist) into the medial septal area (MSA) of rats. Male rats with sham or AV3V lesion and a stainless-steel cannula implanted into the MSA were used. Carbachol (2 nmol) injected into the MSA in sham lesion rats produced pressor (43 +/- 2 mmHg), dipsogenic (9.6 +/- 1.2 ml/h), natriuretic (531 +/- 82-mu-Eq/120 min) and kaliuretic (164 +/- 14-mu-Eq/120 min) responses. In AV3V-lesioned rats (1-5 days and 14-18 days), the pressor (11 +/- 2 mmHg, respectively), dipsogenic (1.9 +/- 0.7 and 1.4 +/- 0.6 ml/h), natriuretic (21 +/- 5 and 159 +/- 44-mu-Eq/120 min) and kaliuretic (124 +/- 14 and 86 +/- 13-mu-Eq/120 min) responses induced by carbachol injection into the MSA were reduced. These results show that the AV3V region is essential for the pressor, dipsogenic, natriuretic and kaliuretic responses induced by cholinergic activation of the MSA in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we investigated the effect of anteroventral third ventricle (AV3V) lesion on pressor, tachycardic, dipsogenic, natriuretic, and kaliuretic responses induced by the injection of the cholinergic agonist carbachol into the ventromedial hypothalamic nucleus (VMH) of rats. Male rats with sham or AV3V lesion and a stainless steel cannula implanted into the VMH were used. Carbachol (2 nmol) injected into the VMH of sham rats produced pressor (32 +/- 4 mmHg). tachycardic (83 +/- 14 bpm), dipsogenic (8.2 +/- 1.1 ml/h). natriuretic (320 +/- 46-mu-Eq/120 min), and kaliuretic (155 +/- 20-mu-Eq/120 min) responses. In AV3V-lesioned rats (2 and 15 days), the pressor (4 +/- 2 and 15 +/- 2 mmHg. respectively), dipsogenic (0.3 +/-0.2 and 1.4 +/- 0.7 ml/h), natriuretic (17 +/- 7 and 99 +/- 21-mu-Eq/120 min), and kaliuretic (76 +/- 14 and 79 +/- 7-mu-Eq/120 min) responses induced by carbachol injection into the VMH were reduced. The tachycardia was also abolished (27 +/- 15 and -23 +/-29 bpm, respectively). These results show that the AV3V region is essential for the pressor, tachycardic, dipsogenic, natriuretic. and kaliuretic responses induced hy cholinergic activation of the VMH in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigated the effect of the anteroventral third ventricle (AV3V) lesion on the pressor, bradycardic, natriuretic, kaliuretic, and dipsogenic responses induced by the injection of the cholinergic agonist carbachol into the lateral preoptic area (LPOA) in rats. Male Holtzman rats with sham or electrolytic AV3V lesion were implanted with stainless steel cannula directly into the LPOA. Injection of carbachol (7.5 nmol) into the LPOA of sham rats induced natriuresis (405 ± 66 μEq/120 min), kaliuresis (234 ± 44 μEq/120 min), water intake (9.5 ± 1.7 ml/60 min), bradycardia (-47 ± 11 bpm), and increase in mean arterial pressure (28 ± 3 mmHg). Acute AV3V lesion (1-5 days) reduced the natriuresis (12 ± 4 μEq/120 min), kaliuresis (128 ± 27 μEq/120 min), water intake (1.7 ± 0.9 ml/60 min), and pressor responses (14 ± 4 mmHg) produced by carbachol into the LPOA. Tachycardia instead of bradycardia was also observed. Chronic (14-18 days) AV3V lesion reduced only the pressor response (10 ± 2 mmHg) induced by carbachol. These results showed that acute, but not chronic, AV3V lesion reduced the natriuretic, kaliuretic, and dipsogenic responses to carbachol injection into the LPOA. The pressor response was reduced in acute or chronic AV3V-lesioned rats. The results suggest that the lateral areas may control the fluid and electrolyte balance independently from the AV3V region in chronic AV3V-lesioned rats. © 1992.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect in rats of an anteroventral third ventricle (AV3V) electrolytic lesion on salivary secretion induced by intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) injection of a cholinergic agonist (pilocarpine) was investigated. Sham- or AV3V-lesioned rats anesthetized with urethane and with a stainless steel cannula implanted into the lateral ventricle (LV) were used. The amount of salivary secretion was studied over a seven-minute period after i.c.v. or i.p. injection of pilocarpine. In sham-operated rats, i.p. injection of pilocarpine (1 mg/kg b.w.) (after 6 h, 2, 7, and 15 days) produced salivary secretion (486 +/- 21, 778 +/- 85, 630 +/- 50, and 560 +/- 55 mg/7 min, respectively). This effect was reduced 6 h, 2, and 7 days after an AV3V lesion (142 +/- 22, 113 +/- 32, and 290 +/- 62 mg/7 min, respectively), but not 15 days after an AV3V lesion (516 +/- 19 mg/7 min). I.c.v. injection of pilocarpine (120 mug in 1 muL), in sham-operated rats after 6 h, 2, 7, and 15 days also produced salivary secretion (443 +/- 20, 417 +/- 81, 496 +/- 14, and 427 +/- 47 mg/7 min, respectively). The effects of i.c.v. pilocarpine were also reduced 6 h, 2, and 7 days after an AV3V lesion (143 +/- 19, 273 +/- 14, and 322 +/- 17 mg/7 min, respectively), but not after 15 days (450 +/- 28 mg/7 min). The results demonstrate that the central nervous system, and particularly the AV3V region, is important for the effect of pilocarpine on salivary secretion in rats. Moreover, they suggest that activation of central pathways may play an important part in the salivary secretion to peripheral pilocarpine in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined whether ANP (atrial natriuretic peptide) concentrations, measured by radioimmunoassay, in the ANPergic cerebral regions involved in regulation of sodium intake and excretion and pituitary gland correlated with differences in sodium preference among 40 Wistar male rats (180-220 g). Sodium preference was measured as mean spontaneous ingestion of 1.5% NaCl solution during a test period of 12 days. The relevant tissues included the olfactory bulb (OB), the posterior and anterior lobes of the pituitary gland (PP and AP, respectively), the median eminence (ME), the medial basal hypothalamus (MBH), and the region anteroventral to the third ventricle (AV3V). We also measured ANP content in the right (RA) and left atrium (LA) and plasma. The concentrations of ANP in the OB and the AP were correlated with sodium ingestion during the preceding 24 h, since an increase of ANP in these structures was associated with a reduced ingestion and vice-versa (OB: r = -0.3649, P<0.05; AP: r = -0.3291, P<0.05). Moreover, the AP exhibited a correlation between ANP concentration and mean NaCl intake (r = -0.4165, P<0.05), but this was not the case for the OB (r = 0.2422). This suggests that differences in sodium preference among individual male rats can be related to variations of AP ANP level. Earlier studies indicated that the OB is involved in the control of NaCl ingestion. Our data suggest that the OB ANP level may play a role mainly in day-to-day variations of sodium ingestion in the individual rat

Relevância:

100.00% 100.00%

Publicador:

Resumo:

a-Melanocyte-stimulating hormone (a-MSH; 0.6 and 3 nmol) microinjected into the anteroventral region of the third ventricle (AV3V) induced a significant increase in diuresis without modifying natriuresis or kaliuresis. Intraperitoneal (ip) injection of a-MSH (3 and 9.6 nmol) induced a significant increase in urinary sodium, potassium and water excretion. Intraperitoneal (3 and 4.8 nmol) or iv (3 and 9.6 nmol) administration of a-MSH did not induce any significant changes in plasma atrial natriuretic peptide (ANP), suggesting that the natriuresis, kaliuresis and diuresis induced by the systemic action of a-MSH can be dissociated from the increase in plasma ANP. These preliminary results suggest that a-MSH may be involved in a g-MSH-independent mechanism of regulation of hydromineral metabolism

Relevância:

100.00% 100.00%

Publicador:

Resumo:

-Melanocyte-stimulating hormone (-MSH; 0.6 and 3 nmol) microinjected into the anteroventral region of the third ventricle (AV3V) induced a significant increase in diuresis without modifying natriuresis or kaliuresis. Intraperitoneal (ip) injection of -MSH (3 and 9.6 nmol) induced a significant increase in urinary sodium, potassium and water excretion. Intraperitoneal (3 and 4.8 nmol) or iv (3 and 9.6 nmol) administration of -MSH did not induce any significant changes in plasma atrial natriuretic peptide (ANP), suggesting that the natriuresis, kaliuresis and diuresis induced by the systemic action of -MSH can be dissociated from the increase in plasma ANP. These preliminary results suggest that -MSH may be involved in a -MSHindependent mechanism of regulation of hydromineral metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia causes a regulated decrease in body temperature (Tb), a response that has been aptly called anapyrexia, but the mechanisms involved are not completely understood. The roles played by nitric oxide (NO) and other neurotransmitters have been documented during hypoxia-induced anapyrexia, but no information exists with respect to hydrogen sulfide (H(2)S), a gaseous molecule endogenously produced by cystathionine beta-synthase (CBS). We tested the hypothesis that HA production is enhanced during hypoxia and that the gas acts in the anteroventral preoptic region (AVPO; the most important thermosensitive and thermointegrative region of the CNS) modulating hypoxia-induced anapyrexia. Thus, we assessed CBS and nitric oxide synthase (NOS) activities [by means of H2S and nitrite/nitrate (NO(x)) production, respectively] as well as cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) levels in the anteroventral third ventricle region (AV3V; where the AVPO is located) during normoxia and hypoxia. Furthermore, we evaluated the effects of pharmacological modifiers of the H2S pathway given i.c.v. or intra-AVPO. I.c.v. or intra-AVPO microinjection of CBS inhibitor caused no change in Tb under normoxia but significantly attenuated hypoxia-induced anapyrexia. During hypoxia there were concurrent increases in H2S production, which could be prevented by CBS inhibitor, indicating the endogenous source of the gas. cAMP concentration, but not cGMP and NOR, correlated with CBS activity. CBS inhibition increased NOS activity, whereas H2S donor decreased NO. production. In conclusion, hypoxia activates H2S endogenous production through the CBS-H(2)S pathway in the AVPO, having a cryogenic effect. Moreover, the present data are consistent with the notion that the two gaseous molecules, H(2)S and NO, play a key role in mediating the drop in Tb caused by hypoxia and that a fine-balanced interplay between NOS-NO and CBS-H(2)S pathways takes place in the AVPO of rats exposed to hypoxia. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.