996 resultados para anode materials


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Liquid plasma, produced by nanosecond pulses, provides an efficient and simple way to fabricate a nanocomposite architecture of Co3O4/CNTs from carbon nanotubes (CNTs) and clusters of Co3O4 nanoparticles in deionized water. The crucial feature of the composite's structure is that Co3O4 nanoparticle clusters are uniformly dispersed and anchored to CNT networks in which Co3O4 guarantees high electrochemical reactivity towards sodium, and CNTs provide conductivity and stabilize the anode structure. We demonstrated that the Co3O4/CNT nanocomposite is capable of delivering a stable and high capacity of 403 mA h g(-1) at 50 mA g(-1) after 100 cycles where the sodium uptake/extract is confirmed in the way of reversible conversion reaction by adopting ex situ techniques. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 212 mA h g(-1) at 1.6 A g(-1) and 190 mA h g(-1) at 3.2 A g(-1), respectively. Due to the simple synthesis technique with high electrochemical performance, Co3O4/CNT nanocomposites have great potential as anode materials for sodium-ion batteries.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solid oxide fuel cell (SOFC) is an electrochemical device that converts chemical energy into electric power with high efficiency. Traditional SOFC has its disadvantages, such as redox cycling instability and carbon deposition while using hydrocarbon fuels. It is because traditional SOFC uses Ni-cermet as anode. In order to solve these problems, ceramic anode is a good candidate to replace Ni. However, the conductivity of most ceramic anode materials are much lower than Ni metal, and it introduces high ohmic resistance. How to increase the conductivity is a hot topic in this research field. Based on our proposed mechanism, several types of ceramic materials have been developed. Vanadium doped perovskite, Sr1-x/2VxTi1-xO3 (SVT) and Sr0.2Na0.8Nb1-xVxO3 (SNNV), achieved the conductivity as high as 300 S*cm-1 in hydrogen, without any high temperature reduction. GDC electrolyte supported cell was fabricated with Sr0.2Na0.8Nb0.9V0.1O3 and the performance was measured in hydrogen and methane respectively. Due to vanadium’s intrinsic problems, the anode supported cell is not easy. Fe doped double perovskite Sr2CoMoO6 (SFCM) was also developed. By carefully doping Fe, the conductivity was improved over one magnitude, without any vigorous reducing conditions. SFCM anode supported cell was successfully fabricated with GDC as the electrolyte. By impregnating Ni-GDC nano particles into the anode, the cell can be operated at lower temperatures while having higher performance than the traditional Ni-cermet cells. Meanwhile, this SFCM anode supported SOFC has long term stability in the reformate containing methane. During the anode development, cathode improvement caused by a thin Co-GDC layer was observed. By adding this Co-GDC layer between the electrolyte and the cathode, the interfacial resistance decreases due to fast oxygen ion transport. This mechanism was confirmed via isotope exchange. This Co-GDC layer works with multiple kinds of cathodes and the modified cell’s performance is 3 times as the traditional Ni-GDC cell. With this new method, lowering the SOFC operation temperature is feasible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybrid urchin-like nanostructures composed of a spherical onion-like carbon (OLC) core and MoS2 nanoleaves were synthesized by a simple solvothermal method followed by thermal annealing treatment. Compared to commercial MoS2 powder, MoS2/OLC nanocomposites exhibit enhanced electrochemical performance as anode materials of lithium-ion batteries (LIBs) with a specific capacity of 853 mA h g−1 at a current density of 50 mA g−1 after 60 cycles, and a moderate initial coulombic efficiency of 71.1%. Furthermore, a simple pre-lithiation method based on direct contact of lithium foil with MoS2/OLC nano-urchins was used to achieve a very high coulombic efficiency of 97.6% in the first discharge/charge cycle, which is at least 26% higher compared to that of pristine MoS2/OLC nano-urchins. This pre-lithiation method can be generalized to develop other carbon-metal sulfide nanohybrids for LIB anode materials. These results may open up a new avenue for the development of the next-generation high-performance LIBs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An "atomic layer-by-layer" structure of Co3O4/graphene is developed as an anode material for lithium-ion batteries. Due to the atomic thickness of both the Co3O4 nanosheets and the graphene, the composite exhibits an ultrahigh specific capacity of 1134.4 mAh g-1 and an ultralong life up to 2000 cycles at 2.25 C, far beyond the performances of previously reported Co3O4/C composites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The demand for high power density lithium-ion batteries (LIBs) for diverse applications ranging from mobile electronics to electric vehicles have resulted in an upsurge in the development of nanostructured electrode materials worldwide. Graphite has been the anode of choice in commercial LiBs. Due to several detrimental electrochemical and environmental issues, efforts are now on to develop alternative non-carbonaceous anodes which are safe, nontoxic and cost effective and at the same time exhibit high lithium storage capacity and rate capability. Titania (TiO2) and tin (Sn) based systems have gained much attention as alternative anode materials. Nanostructuring of TiO2 and SnO2 have resulted in enhancement of structural stability and electrochemical performances. Additionally, electronic wiring of mesoporous materials using carbon also effectively enhanced electronic conductivity of mesoporous electrode materials. We discuss in this article the beneficial influence of structural spacers and electronic wiring in anatase titania (TiO2) and tin dioxide (SnO2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the contribution is to introduce a high performance anode alternative to graphite for lithium-ion batteries (LiBs). A simple process was employed to synthesize uniform graphene-like few-layer tungsten sulfide (WS2) supported on reduced graphene oxide (RGO) through a hydrothermal synthesis route. The WS2-RGO (80:20 and 70:30) composites exhibited good enhanced electrochemical performance and excellent rate capability performance when used as anode materials for lithium-ion batteries. The specific capacity of the WS2-RGO composite delivered a capacity of 400-450 mAh g(-1) after 50 cycles when cycled at a current density of 100 mA g(-1). At 4000 mA g(-1), the composites showed a stable capacity of approximately 180-240 mAh g(-1), respectively. The noteworthy electrochemical performance of the composite is not additive, rather it is synergistic in the sense that the electrochemical performance is much superior compared to both WS2 and RGO. As the observed lithiation/delithiation for WS2-RGO is at a voltage 1.0 V (approximate to 0.1 V for graphite, Li* /Li), the lithium-ion battery with WS2-RGO is expected to possess high interface stability, safety and management of electrical energy is expected to be more efficient and economic. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper presents the study of the decolourisation of real textile effluent by constant current electrolysis in a flow-cell using a DSAO type material. The effect of using different anode materials (Ti/Ru0.3Ti0.7O2; Ti/Ir0.3Ti0.7O2; Ti/RuxSn1-xO2, where X = 0.1, 0.2 or 0.3) on the efficiency of colour removal is discussed. Attempts to perform galvanostatic oxidation (40 and 60 mA cm(-2)) on the as-received effluent demonstrate that colour removal and total organic carbon (TOC) removal are limited. In this case the greatest degree of colour removal is achieved when anode containing 90% SnO2 is used. If the conductivity of the effluent is increased by adding NaCl (0.1 mol L-1) appreciable colour/TOC removal is observed. The efficiencies of colour and TOC removal are discussed in terms of the energy per order (E-EO/kWhm(-3) order(-1)) and energy consumption (E-C/kW h kg(-1) TOC), respectively. Finally, the extent of colour removal is compared to consent levels presented in the literature. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical behaviour of Co3O4 with sodium is reported here. Upon cycling in the voltage window of 0.01–3.0 V, Co3O4 undergoes a conversion reaction and exhibits a reversible capacity of 447 mA h g−1 after 50 cycles. Therefore, nanostructured Co3O4 presents feasible electrochemical sodium storage, offering possibilities to develop new anode materials for sodium-ion batteries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the expected theoretical capacity of 2596 mA h g-1, phosphorus is considered to be the highest capacity anode material for sodium-ion batteries and one of the most attractive anode materials for lithium-ion systems. This work presents a comprehensive study of phosphorus-carbon nanocomposite anodes for both lithium-ion and sodium-ion batteries. The composite electrodes are able to display high initial capacities of approximately 1700 and 1300 mA h g-1 in lithium and sodium half-cells, respectively, when the cells are tested within a larger potential windows of 2.0-0.01 V vs. Li/Li+ and Na/Na+. The level of demonstrated capacity is underpinned by the storage mechanism, based on the transformation of phosphorus to Li3P phase for lithium cells and an incomplete transformation to Na3P phase for sodium cells. The capacity deteriorates upon cycling, which is shown to originate from disintegration of electrodes and their delamination from current collectors by post-cycling ex situ electron microscopy. Stable cyclic performance at the level of ∼700 and ∼350-400 mA h g-1 can be achieved if the potential windows are restricted to 2.0-0.67 V vs. Li/Li+ for lithium and 2-0.33 vs. Na/Na+ for sodium half-cells. The results are critically discussed in light of existing literature reports

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis was focused on developing alloy based anode materials for Li-ion and Na-ion batteries. It helps to reduce the size and increase the energy density of the batteries. Furthermore, a novel cathode material was developed for Na-ion batteries which showed good cycling performance over a period of 100 cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A range of high-capacity Li-ion anode materials (conversion reactions with lithium) suffer from poor cycling stability and limited high-rate performance. These issues can be addressed through hybridization of multiple nanostructured components in an electrode. Using a Co3O4-Fe2O3/C system as an example, we demonstrate that the cycling stability and rate performance are improved in a hybrid electrode. The hybrid Co3O4-Fe2O3/C electrode exhibits long-term cycling stability (300 cycles) at a moderate current rate with a retained capacity of approximately 700 mAh g(-1). The reversible capacity of the Co3O4-Fe2O3/C electrode is still about 400 mAh g(-1) (above the theoretical capacity of graphite) at a high current rate of ca. 3 A g(-1), whereas Co3O4-Fe2O3, Fe2O3/C, and Co3O4/C electrodes (used as controls) are unable to operate as effectively under identical testing conditions. To understand the structure-function relationship in the hybrid electrode and the reasons for the enhanced cycling stability, we employed a combination of ex situ and in situ techniques. Our results indicate that the improvements in the hybrid electrode originate from the combination of sequential electrochemical activity of the transition metal oxides with an enhanced electronic conductivity provided by percolating carbon chains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compostos da família La1-xSr xCr0,5Mn0,5O3 são apontados como potenciais anodos cerâmicos de células a combustível de óxidos sólidos. A utilização de anodos cerâmicos tem como objetivo eliminar os problemas de depósito de carbono na superfície do níquel e a baixa resistência a ciclos de redução/oxidação observados no compósito cerâmica-metal à base de zircônia estabilizada e níquel, que é o material anódico mais usado nestas células. Neste estudo são apresentados os resultados da síntese pela técnica dos precursores poliméricos e da caracterização de compostos com x = 0,5, estequiométrico e com 5% de deficiência catiônica no sítio A da estrutura perovskita La1-xSr xCr0,5Mn0,5O3 e (La1-xSr x)0,95Cr0,5Mn0,5O3, respectivamente. Os resultados evidenciam que o composto estudado possui altos valores de condutividade elétrica e baixa reatividade com eletrólitos à base de zircônia.