860 resultados para amplify and forward


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study Forward Osmosis (FO) as an emerging desalination technology, and its capability to replace totally or partially Reverse Osmosis (RO) in order to reduce the great amount of energy required in the current desalination plants. For this purpose, we propose a superstructure that includes both membrane based desalination technologies, allowing the selection of only one of the technologies or a combination of both of them seeking for the optimal configuration of the network. The optimization problem is solved for a seawater desalination plant with a given fresh water production. The results obtained show that the optimal solution combines both desalination technologies to reduce not only the energy consumption but also the total cost of the desalination process in comparison with the same plant but operating only with RO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the nature of the referral patterns in the email telemedicine network operated by the Swinfen Charitable Trust with a view to informing long-term resource planning. Over the first six years of operation, 62 hospitals from 19 countries registered with the Trust in order to be able to refer cases for specialist advice; 55 of these hospitals (89%) actually referred cases during this period. During the first six years of operation, nearly 1000 referrals were submitted and answered, from a wide range of specialty areas. Between July 2002 and March 2005 the referral rate rose from 127 to 318 cases per year. The median length of time required to provide a specialist's response was 2.3 days during the first 12 months and 1.8 days during the last 12 months. Five hospitals submitted cases for more than four years (together sending a total of 493 cases). Their activity data showed a trend to declining referral rates over the four-year period, which may represent successful knowledge transfer. There is some evidence that over the last three years the growth in demand has been exponential, while the growth in resources available (i.e. specialists) has been linear, a situation which cannot continue for very long before demand outstrips supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the authors investigate the outage-optimal relay strategy under outdated channel state information (CSI) in a decode-and-forward cooperative communication system. They first confirm mathematically that minimising the outage probability under outdated CSI is equivalent to minimising the conditional outage probability on the outdated CSI of all the decodable relays' links. They then propose a multiple-relay strategy with optimised transmitting power allocation (MRS-OTPA) that minimises the conditional outage probability. It is shown that this MRS is a generalised relay approach to achieve the outage optimality under outdated CSI. To reduce the complexity, they also propose a MRS with equal transmitting power allocation (MRS-ETPA) that achieves near-optimal outage performance. It is proved that full spatial diversity, which has been achieved under ideal CSI, can still be achieved under outdated CSI through MRS-OTPA and MRS-ETPA. Finally, the outage performance and diversity order of MRS-OTPA and MRS-ETPA are evaluated by simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a three-node decode-and-forward (DF) half-duplex relaying system, where the source first harvests RF energy from the relay, and then uses this energy to transmit information to the destination via the relay. We assume that the information transfer and wireless power transfer phases alternate over time in the same frequency band, and their time fraction (TF) may change or be fixed from one transmission epoch (fading state) to the next. For this system, we maximize the achievable average data rate. Thereby, we propose two schemes: (1) jointly optimal power and TF allocation, and (2) optimal power allocation with fixed TF. Due to the small amounts of harvested power at the source, the two schemes achieve similar information rates, but yield significant performance gains compared to a benchmark system with fixed power and fixed TF allocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the impact of in-phase and quadrature-phase imbalance (IQI) in two-way amplify-and-forward (AF) relaying systems. In particular, the effective signal-to-interference-plus-noise ratio (SINR) is derived for each source node, considering four different linear detection schemes, namely, uncompensated (Uncomp) scheme, maximal-ratio-combining (MRC), zero-forcing (ZF) and minimum mean-square error (MMSE) based schemes. For each proposed scheme, the outage probability (OP) is investigated over independent, non-identically distributed Nakagami-m fading channels, and exact closed-form expressions are derived for the first three schemes. Based on the closed-form OP expressions, an adaptive detection mode switching scheme is designed for minimizing the OP of both sources. An important observation is that, regardless of the channel conditions and transmit powers, the ZF-based scheme should always be selected if the target SINR is larger than 3 (4.77dB), while the MRC-based scheme should be avoided if the target SINR is larger than 0.38 (-4.20dB).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the performance of dual-hop two-way amplify-and-forward (AF) relaying in the presence of inphase and quadrature-phase imbalance (IQI) at the relay node. In particular, the effective signal-to-interference-plus-noise ratio (SINR) at both sources is derived. These SINRs are used to design an instantaneous power allocation scheme, which maximizes the minimum SINR of the two sources under a total transmit power constraint. The solution to this optimization problem is analytically determined and used to evaluate the outage probability (OP) of the considered two-way AF relaying system. Both analytical and numerical results show that IQI can create fundamental performance limits on two-way relaying, which cannot be avoided by simply improving the channel conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the half-duplex relay channel applying the decode-and-forward protocol the relay introduces energy over random time intervals into the channel as observed at the destination. Consequently, during simulation the average signal power seen at the destination becomes known at run-time only. Therefore, in order to obtain specific performance measures at the signal-to-noise ratio (SNR) of interest, strategies are required to adjust the noise variance during simulation run-time. It is necessary that these strategies result in the same performance as measured under real-world conditions. This paper introduces three noise power allocation strategies and demonstrates their applicability using numerical and simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider an LTE network where a secondary user acts as a relay, transmitting data to the primary user using a decode-and-forward mechanism, transparent to the base-station (eNodeB). Clearly, the relay can decode symbols more reliably if the employed precoder matrix indicators (PMIs) are known. However, for closed loop spatial multiplexing (CLSM) transmit mode, this information is not always embedded in the downlink signal, leading to a need for effective methods to determine the PMI. In this thesis, we consider 2x2 MIMO and 4x4 MIMO downlink channels corresponding to CLSM and formulate two techniques to estimate the PMI at the relay using a hypothesis testing framework. We evaluate their performance via simulations for various ITU channel models over a range of SNR and for different channel quality indicators (CQIs). We compare them to the case when the true PMI is known at the relay and show that the performance of the proposed schemes are within 2 dB at 10% block error rate (BLER) in almost all scenarios. Furthermore, the techniques add minimal computational overhead over existent receiver structure. Finally, we also identify scenarios when using the proposed precoder detection algorithms in conjunction with the cooperative decode-and-forward relaying mechanism benefits the PUE and improves the BLER performance for the PUE. Therefore, we conclude from this that the proposed algorithms as well as the cooperative relaying mechanism at the CMR can be gainfully employed in a variety of real-life scenarios in LTE networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com vista a revolucionar o sector das comunicações móveis, muito à custa dos elevados débitos prometidos, a tecnologia LTE recorre a uma técnica que se prevê que seja bastante utilizada nas futuras redes de comunicações móveis: Relaying. Juntamente com esta técnica, o LTE recorre à técnica MIMO, para melhorar a qualidade da transmissão em ambientes hostis e oferecer elevados ritmos de transmissão. No planeamento das próximas redes LTE, o recurso à técnica Relaying é frequente. Esta técnica, tem como objectivo aumentar a cobertura e/ou capacidade da rede, e ainda melhorar o seu desempenho em condições de fronteira de célula. A performance de uma RS depende da sua localização, das condições de propagação do canal rádio a que tanto a RS como o EU estão sujeitos, e ainda da capacidade que a RS tem de receber, processar e reencaminhar a informação. O objectivo da tese é estudar a relação existente entre o posicionamento de uma RS e o seu desempenho. Desta forma, pretende-se concluir qual a posição ideal de uma RS (tanto do tipo AF como SDF). Para além deste estudo, é apresentado um comparativo do desempenho dos modos MIMO TD e OL-SM, onde se conclui em que condições deverão ser utilizados, numa rede LTE equipada com FRSs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the design of nonregenerativerelaying transceivers in cooperative systems where channel stateinformation (CSI) is available at the relay station. The conventionalnonregenerative approach is the amplify and forward(A&F) approach, where the signal received at the relay is simplyamplified and retransmitted. In this paper, we propose an alternativelinear transceiver design for nonregenerative relaying(including pure relaying and the cooperative transmission cases),making proper use of CSI at the relay station. Specifically, wedesign the optimum linear filtering performed on the data to beforwarded at the relay. As optimization criteria, we have consideredthe maximization of mutual information (that provides aninformation rate for which reliable communication is possible) fora given available transmission power at the relay station. Threedifferent levels of CSI can be considered at the relay station: onlyfirst hop channel information (between the source and relay);first hop channel and second hop channel (between relay anddestination) information, or a third situation where the relaymay have complete cooperative channel information includingall the links: first and second hop channels and also the directchannel between source and destination. Despite the latter beinga more unrealistic situation, since it requires the destination toinform the relay station about the direct channel, it is useful as anupper benchmark. In this paper, we consider the last two casesrelating to CSI.We compare the performance so obtained with theperformance for the conventional A&F approach, and also withthe performance of regenerative relays and direct noncooperativetransmission for two particular cases: narrowband multiple-inputmultiple-output transceivers and wideband single input singleoutput orthogonal frequency division multiplex transmissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a two-way relay network (TWRN), where distributed space-time codes are constructed across multiple relay terminals in an amplify-and-forward mode. Each relay transmits a scaled linear combination of its received symbols and their conjugates,with the scaling factor chosen based on automatic gain control. We consider equal power allocation (EPA) across the relays, as well as the optimal power allocation (OPA) strategy given access to instantaneous channel state information (CSI). For EPA, we derive an upper bound on the pairwise-error-probability (PEP), from which we prove that full diversity is achieved in TWRNs. This result is in contrast to one-way relay networks, in which case a maximum diversity order of only unity can be obtained. When instantaneous CSI is available at the relays, we show that the OPA which minimizes the conditional PEP of the worse link can be cast as a generalized linear fractional program, which can be solved efficiently using the Dinkelback-type procedure.We also prove that, if the sum-power of the relay terminals is constrained, then the OPA will activate at most two relays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate half-duplex two-way dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying in the presence of in-phase and quadrature-phase (I/Q) imbalance. A compensation approach for the I/Q imbalance is proposed, which employs the received signals together with their conjugations to detect the desired signal. We also derive the average symbol error probability of the considered half-duplex two-way dual-hop CSI-assisted AF relaying networks with and without compensation for I/Q imbalance in Rayleigh fading channels. Numerical results are provided and show that the proposed compensation method mitigates the impact of I/Q imbalance to a certain extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, dual-hop amplify-and-forward (AF) cooperative systems in the presence of high-power amplifier (HPA) nonlinearity at semi-blind relays, are investigated. Based on the modified AF cooperative system model taking into account the HPA nonlinearity, the expression for the output signal-to-noise ratio (SNR) at the destination node is derived, where the interference due to both the AF relaying mechanism and the HPA nonlinearity is characterized. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability (SEP), which is derived using the moment-generating function (MGF) approach, considering transmissions over Nakagami-m fading channels. Numerical results are provided and show the effects of some system parameters, such as the HPA parameters, numbers of relays, quadrature amplitude modulation (QAM) order, Nakagami parameters, on performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate half-duplex two-way dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying in the presence of high-power amplifier (HPA) nonlinearity at relays. The expression for the end-to-end signal-to-noise ratio (SNR) is derived as per the modified system model by taking into account the interference caused by relaying scheme and HPA nonlinearity. The system performance of the considered relaying network is evaluated in terms of average symbol error probability (SEP) in Nakagami-$m$ fading channels, by making use of the moment-generating function (MGF) approach. Numerical results are provided and show the effects of several parameters, such as quadrature amplitude modulation (QAM) order, number of relays, HPA parameters, and Nakagami parameter, on performance.