924 resultados para amphiphilic copolymers, block copolymers, statistical copolymers, inverse emulsions, micelles
Resumo:
This work reports the first instance of self-organized thermoset blends containing diblock copolymers with a crystallizable thermoset-immiscible block. Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and a low-molecular-weight (M-n = 1400) amphiphilic polyethylene-block-poly(ethylene oxide) (EEO) symmetric diblock copolymer were prepared using 4,4'-methylenedianiline (MDA) as curing agent and were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). All the MDA-cured ER/EEO blends do not show macroscopic phase separation but exhibit microstructures. The ER selectively mixes with the epoxy-miscible PEO block in the EEO diblock copolymer whereas the crystallizable PE blocks that are immiscible with ER form separate microdomains at nanoscales in the blends. The PE crystals with size on nanoscales are formed and restricted within the individual spherical micelles in the nanostructured ER/EEO blends with EEO content up to 30 wt %. The spherical micelles are highly aggregated in the blends containing 40 and 50 wt % EEO. The PE dentritic crystallites exist in the blend containing 50 wt % EEO whereas the blends with even higher EEO content are completely volume-filled with PE spherulites. The semicrystalline microphase-separated lamellae in the symmetric EEO diblock copolymer are swollen in the blend with decreasing EEO content, followed by a structural transition to aggregated spherical micellar phase morphology and, eventually, spherical micellar phase morphology at the lowest EEO contents. Three morphological regimes are identified, corresponding precisely to the three regimes of crystallization kinetics of the PE blocks. The nanoscale confinement effect on the crystallization kinetics in nanostructured thermoset blends is revealed for the first time. This new phenomenon is explained on the basis of homogeneous nucleation controlled crystallization within nanoscale confined environments in the block copolymer/thermoset blends.
Resumo:
An artificial oxygen carrier is constructed by conjugating hemoglobin molecules to biodegradable micelles. Firstly a series of triblock copolymers (PEG-PMPC-PLA) in which the middle block contains pendant propargyl groups were synthesized and characterized. After the amphiphilic copolymer was self-assembled into core-shell micelles in aqueous solution, azidized hemoglobin molecules protected by carbon monoxide (CO) were conjugated to the micelles via click reaction between the propargyl and azido groups. The conjugation causes an increase of the micelle's mean diameter. Maximum conjugation ratio is 250 wt% in the hemoglobin-conjugated micelles (HCMs). Oxygen-binding ability of the HCMs was demonstrated by converting the CO-binding state of the HCMs into O-2-binding state.
Resumo:
Nuclear medicine imaging techniques such as PET are of increasing relevance in pharmaceutical research being valuable (pre)clinical tools to non-invasively assess drug performance in vivo. Therapeutic drugs, e.g. chemotherapeutics, often suffer from a poor balance between their efficacy and toxicity. Here, polymer based drug delivery systems can modulate the pharmacokinetics of low Mw therapeutics (prolonging blood circulation time, reducing toxic side effects, increasing target site accumulation) and therefore leading to a more efficient therapy. In this regard, poly-N-(2-hydroxypropyl)-methacrylamide (HPMA) constitutes a promising biocompatible polymer. Towards the further development of these structures, non-invasive PET imaging allows insight into structure-property relationships in vivo. This performant tool can guide design optimization towards more effective drug delivery. Hence, versatile radiolabeling strategies need to be developed and establishing 18F- as well as 131I-labeling of diverse HPMA architectures forms the basis for short- as well as long-term in vivo evaluations. By means of the prosthetic group [18F]FETos, 18F-labeling of distinct HPMA polymer architectures (homopolymers, amphiphilic copolymers as well as block copolymers) was successfully accomplished enabling their systematic evaluation in tumor bearing rats. These investigations revealed pronounced differences depending on individual polymer characteristics (molecular weight, amphiphilicity due to incorporated hydrophobic laurylmethacrylate (LMA) segments, architecture) as well as on the studied tumor model. Polymers showed higher uptake for up to 4 h p.i. into Walker 256 tumors vs. AT1 tumors (correlating to a higher cellular uptake in vitro). Highest tumor concentrations were found for amphiphilic HPMA-ran-LMA copolymers in comparison to homopolymers and block copolymers. Notably, the random LMA copolymer P4* (Mw=55 kDa, 25% LMA) exhibited most promising in vivo behavior such as highest blood retention as well as tumor uptake. Further studies concentrated on the influence of PEGylation (‘stealth effect’) in terms of improving drug delivery properties of defined polymeric micelles. Here, [18F]fluoroethylation of distinct PEGylated block copolymers (0%, 1%, 5%, 7%, 11% of incorporated PEG2kDa) enabled to systematically study the impact of PEG incorporation ratio and respective architecture on the in vivo performance. Most strikingly, higher PEG content caused prolonged blood circulation as well as a linear increase in tumor uptake (Walker 256 carcinoma). Due to the structural diversity of potential polymeric carrier systems, further versatile 18F-labeling strategies are needed. Therefore, a prosthetic 18F-labeling approach based on the Cu(I)-catalyzed click reaction was established for HPMA-based polymers, providing incorporation of fluorine-18 under mild conditions and in high yields. On this basis, a preliminary µPET study of a HPMA-based polymer – radiolabeled via the prosthetic group [18F]F-PEG3-N3 – was successfully accomplished. By revealing early pharmacokinetics, 18F-labeling enables to time-efficiently assess the potential of HPMA polymers for efficient drug delivery. Yet, investigating the long-term fate is essential, especially regarding prolonged circulation properties and passive tumor accumulation (EPR effect). Therefore, radiolabeling of diverse HPMA copolymers with the longer-lived isotope iodine-131 was accomplished enabling in vivo evaluation of copolymer P4* over several days. In this study, tumor retention of 131I-P4* could be demonstrated at least over 48h with concurrent blood clearance thereby confirming promising tumor targeting properties of amphiphilic HPMA copolymer systems based on the EPR effect.
Resumo:
Poly(ethylene oxide)-b-poly(2-hydroxyethyl methacrylate) (PEO-b-PHEMA) was synthesized by successive atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate(HEMA) monomer using PEO-Br macroinitiator as initiator, CuBr/CuBr2 and 2,2.-bipyridyl (bpy) as catalyst and ligand. IR, H-1 NMR, and GPC analysis indicate that PEO-b-PHEMA block copolymer with low polydispersity index (M-w/M-n approximate to 1.1) has been formed. Self-assembly of this double hydrophilic block copolymer in the selective solvent and water was also studied. Owing to the high hydrophilic nature of the PEO and PHEMA blocks, this double hydrophilic block copolymer cannot disperse well in water. So block copolymer was modified by part esterification of PEO-b-PHEMA with acetic anhydride, which increased the hydrophobic group of the PHEMA block. The TEM results show that this block copolymer spontaneously form well-defined micelles in water.
Resumo:
Blends of poly(vinyl methyl ether) (PVME) and poly(methyl methacrylate) (PMMA) compatibilized by poly(styrene-block-methyl methacrylate) (P(S-b-MMA)) ale studied by FT-IR, DSC, excimer fluorescence spectrometry, and scanning electron microscopy (SEM). In FT-IR measurement the ratio of absorption intensity at 1107 cm(-1) to that at 1085 cm(-1) (I-1107/I-1085) reaches a minimum at about 10wt% block copolymer content. DSC results show that the glass transition temperature of PVME in the blends has a maximum at 10 wt% copolymer content. In plots of the ratio of excimer-to-monomer fluorescence emission intensities (I-E/I-M) VS block copolymer content, I-E/I-M increases rapidly above 10%. Ail these phenomena show that PS block chains penetrate into PVME: domains on addition of block copolymer. Above 10% copolymer content, block copolymer chains tend to form micelles in bulk phase.
Resumo:
Les polymères hydrosolubles sont utilisés dans diverses industries pour permettre la floculation, soit une séparation solide-liquide de particules présentes en suspension colloïdale. Afin de réduire les impacts environnementaux de l’exploitation des sables bitumineux en Alberta, l’industrie est à la recherche de nouveaux moyens et procédés pour traiter les résidus miniers permettant de séparer les matières solides et de récupérer l’eau. L’objectif des travaux présentés est d’améliorer la floculation, la densification et la déshydratation de ces résidus miniers aqueux par de nouveaux polymères synthétiques. Des homopolymères d’acrylamide de différentes masses molaires ont été synthétisés pour étudier l’influence de la masse molaire sur l’efficacité de floculation. Le taux initial de sédimentation (TIS) est le paramètre qui fut utilisé afin de comparer l’efficacité de floculation des différents polymères. Il a été possible de confirmer l’importance de la masse molaire sur l’efficacité de floculation et de déterminer une masse molaire minimale d’environ 6 MDa pour des polyacrylamides, afin d’obtenir l’efficacité de floculation maximale de suspensions colloïdales principalement composées de kaolin. Afin d’étudier l’effet des charges sur l’efficacité de floculation, des polymères anioniques et cationiques ont été synthétisés. Une série de copolymères d’acrylamide et d’acide acrylique ont été synthétisés comme polymères anioniques et deux séries de copolymères ont été synthétisés comme polymères cationiques, soit des copolymères d’acrylamide et de chlorure de diallyldiméthylammonium et des copolymères de 4-vinyl pyridine et de 1-méthyl-4-vinyl pyridinium. Il a été démontré que les charges anioniques des polymères avaient peu d’influence sur l’efficacité de floculation et que leur comportement en présence de sels était différent de ce que prévoyait la littérature. Il a aussi été démontré que les charges cationiques des polymères n’améliorent pas l’efficacité de floculation. Par la suite, des séries de copolymères amphiphiles, avec des monomères d’acrylamide, de N-alkylacrylamides et d’acrylonitrile, ont été synthétisés, pour étudier l’effet du caractère amphiphile sur la déshydratation des résidus miniers. Le pourcentage de déshydratation nette est le paramètre qui fut utilisé afin de comparer l’efficacité de déshydratation des différents polymères. Il a été possible de développer des copolymères amphiphiles qui améliorent l’efficacité de déshydratation par rapport à des homopolymères d’acrylamide. Il ne fut pas possible de déterminer une tendance entre la balance hydrophile/hydrophobe des copolymères amphiphiles et l’efficacité de déshydratation.
Resumo:
Micelles composed of amphiphilic copolymers linked to a radioactive element are used in nuclear medicine predominantly as a diagnostic application. A relevant advantage of polymeric micelles in aqueous solution is their resulting particle size, which can vary from 10 to 100 nm in diameter. In this review, polymeric micelles labeled with radioisotopes including technetium (99mTc) and indium (111In), and their clinical applications for several diagnostic techniques, such as single photon emission computed tomography (SPECT), gamma-scintigraphy, and nuclear magnetic resonance (NMR), were discussed. Also, micelle use primarily for the diagnosis of lymphatic ducts and sentinel lymph nodes received special attention. Notably, the employment of these diagnostic techniques can be considered a significant tool for functionally exploring body systems as well as investigating molecular pathways involved in the disease process. The use of molecular modeling methodologies and computer-aided drug design strategies can also yield valuable information for the rational design and development of novel radiopharmaceuticals.
Resumo:
Die Funktionalisierung anorganischer Nanopartikel stellt einen Schlüsselschritt in der Herstellung von Nanokompositen dar. Nanokomposite erzielen ein wachsendes Interesse im Bereich der Polymer- und der Materialwissenschaften, da die Kombination mehrerer Materialien mit unterschiedlichen Eigenschaften, wie etwa die Kombination anorganischer Nanopartikel mit Polymeren, große Synergieeffekte erhoffen lässt.rnrnDer Einbau anorganischer Nanopartikel in polymere Matrixmaterialien zur Verbesserung oder Einführung mechanischer, optischer oder magnetischer Eigenschaften von Polymeren bedarf allerdings der Modifizierung der Oberfläche des anorganischen Materials, um die für die positiven Synergieeffekte essentielle Kompatibilität zwischen Füllstoff und Matrix zu erreichen.rnrnEine Vielzahl anorganischer Partikel ist bereits als wässrige Dispersion erhältlich (SiO2, Al2O3, CeO2, ZrO2, ...). Mehrkomponenten- Lösungsmittelsysteme ermöglichen den Transfer dieser Partikel in eine unpolare Umgebung und gleichzeitig deren Funktionalisierung mit amphiphilen Copolymeren. Aufgrund der reversiblen Schaltbarkeit dieser Lösungsmittelsysteme zwischen einem einphasigen und zweiphasigen Zustand werden die zu Beginn in zwei nichtmischbaren Phasen vorliegenden Reaktionspartner durch Übergang in einen einphasigen Zustand unter homogenen Bedingungen in Kontakt gebracht und durch eine erneute Phasentrennung isoliert.rnEin weiterer Vorteil dieser Lösungsmittelsysteme ist deren Tolerierung funktioneller Gruppen in den verwendeten amphiphilen Copolymeren, welche nicht in Wechselwirkung mit der Partikeloberfläche stehen. Beispielsweise können Amine in den amphiphilen Copolymeren für die Wechselwirkung der funktionalisierten Partikel mit einer Polyurethanmatrix dienen, Alkine können mittels einer 1,3-dipolaren Cycloaddition umgesetzt werden oder aber perfluorierten Seitenketten in den Seitenketten der amphiphilen Copolymere die Kompatibilisierung der funktionalisierten Partikel mit einem perfluorierten Polymer gewährleisten.
Resumo:
Bei der Untersuchung von Membranproteinen bedarf es der Entwicklung von neuen Methoden, da Standardmethoden, entwickelt für lösliche Proteine, meist nicht auf Membranproteine angewendet werden können. Das größte Problem besteht in der schlechten Wasserlöslichkeit der Membranproteine, da diese sich in vivo in einer hydrophoben Umgebung, der Membran, befinden. Um dennoch isolierte Membranproteine und ihre Faltung in vitro charakterisieren zu können, sind membranmimetische Systeme notwendig um Membranproteine in Lösung zu bringen. In dieser Arbeit wurden Lysophosphocholin Detergenzien, die Copolymere Amphipol A8-35, p(HMPA)-co-p(LMA) sowie synthetische Membranen aus Phospholipiden auf Ihre Eigenschaften in wässriger Lösung untersucht, und deren Auswirkungen auf die Solubilisierung und Dimerisierung der Glykophorin A (GpA)-Transmembranhelix analysiert. Es wurde erstmals gezeigt, dass die Aggregtionszahl von Detergenzmizellen die Dimerisierung von GpA beeinflusst. Die Copolymere A8-35 und pHPMA-pLMA sind in der Lage die Sekundärstruktur von GpA sowie dessen Dimer zu stabilisieren. Allerdings ist dies bei pHPMA-pLMA Copolymeren erst ab einem LMA-Anteil von über 15% möglich. In synthetischen Membranen zeigte die Dimerisierung von GpA eine Abhängigkeit von negativ geladenen Lipiden, die die Dimerisierung zwar vermindern aber die Ausbildung der Transmembranhelix fördern. Eine Zugabe von physiologischen Konzentrationen an Calciumionen ändert die Membraneigenschaften drastisch aber die Dimerisierung von GpA wird nur geringfügig beeinflusst.
Resumo:
Gene-directed enzyme prodrug therapy is a form of cancer therapy in which delivery of a gene that encodes an enzyme is able to convert a prodrug, a pharmacologically inactive molecule, into a potent cytotoxin. Currently delivery of gene and prodrug is a two-step process. Here, we propose a one-step method using polymer nanocarriers to deliver prodrug, gene and cytotoxic drug simultaneously to malignant cells. Prodrugs acyclovir, ganciclovir and 5-doxifluridine were used to directly to initiate ring-opening polymerization of epsilon-caprolactone, forming a hydrophobic prodrug-tagged poly(epsilon-caprolactone) which was further grafted with hydrophilic polymers (methoxy poly(ethylene glycol), chitosan or polyethylenemine) to form amphiphilic copolymers for micelle formation. Successful synthesis of copolymers and micelle formation was confirmed by standard analytical means. Conversion of prodrugs to their cytotoxic forms was analyzed by both two-step and one-step means i.e. by first delivering gene plasmid into cell line HT29 and then challenging the cells with the prodrug-tagged micelle carriers and secondly by complexing gene plasmid onto micelle nanocarriers and delivery gene and prodrug simultaneously to parental HT29 cells. Anticancer effectiveness of prodrug-tagged micelles was further enhanced by encapsulating chemotherapy drugs doxorubicin or SN-38. Viability of colon cancer cell line HT29 was significantly reduced. Furthermore, in an effort to develop a stealth and targeted carrier, CD47-streptavidin fusion protein was attached onto the micelle surface utilizing biotin-streptavidin affinity. CD47, a marker of self on the red blood cell surface, was used for its antiphagocytic efficacy, results showed that micelles bound with CD47 showed antiphagocytic efficacy when exposed to J774A.1 macrophages. Since CD47 is not only an antiphagocytic ligand but also an integrin associated protein, it was used to target integrin alpha(v)beta(3), which is overexpressed on tumor-activated neovascular endothelial cells. Results showed that CD47-tagged micelles had enhanced uptake when treated to PC3 cells which have high expression of alpha(v)beta(3). The synthesized multifunctional polymeric micelle carriers developed could offer a new platform for an innovative cancer therapy regime.
Resumo:
This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore size, while the smaller nanoparticle underwent faster self-assembly to form more compact 3D scaffolds with smaller porosity but more stable structure. Controlled release studies confirmed the ability of governing simultaneous release of different model drugs with independent release rate from a same scaffold. Cytotoxicity tests showed that all synthesized peptides, copolymers and peptide-copolymer conjugates were biocompatible with SW-620 cell lines and NIH3T3 cell lines. This new type of self-assembled scaffolds combined the advantages of peptide nanofibers and versatile controlled release of polymeric nanoparticles to achieve simultaneous multi-drug loading and controlled release of each drug, uniform distribution and flexibility of hydrogel scaffolds. The investigations in second part were first to design and synthesize organic biocide-loaded nanoparticles for low-leaching wood preservation using a cost-effective one-pot method to synthesize amphiphilic chitosan-g-PMMA nanoparticles loading with ~25-28 wt.% of the fungicide tebuconazole with particle size of ~100 nm diameter by FESEM. FESEM analysis confirmed efficient penetration of nanoparticles throughout the treated wooden stake with dimension of 19 × 19 × 455 mm^3. Leaching studies showed that biocide introduced into sapwood via nanoparticles leached only ~9% compared with the amount leached from tebuconazole solution-treated control, while soil jar tests showed that the nanoparticle-treated wood blocks were effectively protected from biological decay tested against G. trabeum, a brown rot fungus. Copper oxide nanoparticles with and without polymer stabilizers were also investigated to use as inorganic wood preservatives to clarify the factor affecting copper leaching from treated wood. Copper oxide nanoparticles with uniform diameters of ~10 nm and ~50 nm were prepared, and the leachates from southern pine sapwood treated with these nanoparticles were analyzed. It was found by TEM and EDS analysis that significant numbers of nanoparticles leached from the treated wood. The 50 nm nanoparticles leached slightly less than a soluble copper salt control, but 10 nm nanoparticles leached substantially more than the control. The effect of polymer stabilizers on nanoparticle leaching was also investigated. Results showed that polymer stabilizers increased leaching. The trends showed that nanoparticle size was a major factor in copper leaching.
Resumo:
Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications. In the study reported, we melt-electrospun blends of poly(ε-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block-PCL). A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated. Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 µm) compared to pure PCL. The PCL fibres obtained had average diameters ranging from 6 to 33 µm and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased. This approach shows that PCL and blends of PEG-block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes. Copyright © 2010 Society of Chemical Industry
Resumo:
A new kind of electroactive polymers was synthesized by using aniline pentamer (AP) cross-linking chitosan (CS) in acetic acid/DMSO/DMF solution. UV-vis and CV confirmed the electroactivity of polymers in acidic aqueous solution. The amphiphilic polymers self-assembled into 200-300 nm micelles by dialysis against deionized water from the acetic acid buffer solution. Three samples with different weight percentages of AP were used to identify the relationship between the content of AP and the differentiation of rat neuronal pheochromocytoma PC-12 cells without external stimulation.
Resumo:
Surfactant-polymer interactions are widely used when required rheological properties for specific applications, such as the production of fluids for oil exploration. Studies of the interactions of chitosan with cationic surfactants has attracted attention by being able to cause changes in rheological parameters of the systems making room for new applications. The commercial chitosan represents an interesting alternative to these systems, since it is obtained from partial deacetylation of chitin: the residues sites acetylated can then be used for the polymer-surfactant interactions. Alkyl ethoxylated surfactants can be used in this system, since these non-ionic surfactants can interact with hydrophobic sites of chitosan, modifying the rheology of solutions or emulsions resultants, which depends on the relaxation phenomenon occurring in these systems. In this work, first, inverse emulsions were prepared from chitosan solution as the dispersed phase and cyclohexane as the continuous phase were, using CTAB as a surfactant. The rheological analysis of these emulsions showed pronounced pseudoplastic behavior. This behavior was attributed to interaction of "loops" of chitosan chains. Creep tests were also performed and gave further support to these discussions. Subsequently, in order to obtain more information about the interaction of chitosan with non-ionic surfactants, solutions of chitosan were mixed with C12E8 and and carried out rheological analysis and dynamic light scattering. The systems showed marked pseudoplastic behavior, which became less evident when the concentration of surfactant was increased. Arrhenius and KWW equations were used to obtain parameters of the apparent activation energy and relaxation rate distribution, respectively, to which were connected to the content of surfactant and temperature used in this work
Resumo:
Blends of linear low-density polyethylene (LLDPE) and a diblock copolymer of hydrogenated polybutadiene and methyl methacrylate [P(HB-b-MMA)] were studied by transimission electron microscope (TEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD). At 10 wt% block copolymer content, block copolymer chains exist as spherical micelles and cylindrical micelles in LLDPE matrix. At 50 wt% block copolymer content, block copolymer chains mainly form cylindrical micelles. The core and corona of micelles consist of PMMA and PHB blocks, respectively. DSC results show that the total enthalpy of crystallization of the blends varies linearly with LLDPE weight percent, indicating no interactions in the crystalline phase. In the blends, no distortion of the unit cell is observed in WAXD tests.