996 resultados para amorphous thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Azobenzene-containing materials exhibit various photomechanical properties, including the formation of surface relief gratings (SRG) when irradiated with two interfering laser beams. In a recent study, a novel glass-forming derivative of Disperse Red 1 (DR1) with a mexylaminotriazine group was synthesized in high yield with a simple and efficient procedure, and showed the ability to form high-quality amorphous thin films with a high resistance to crystallization. Irradiation of films of this material yielded SRG with growth rates comparable to other reported azo materials. Herein, a series of closely related molecular glasses containing azobenzene chromophores with various absorption maxima ranging from 410 to 570 nm were synthesized, and their physical and photomechanical properties were studied. All materials studied showed the ability to form stable glassy phases, and irradiation with lasers emitting at various wavelengths allowed to perform a comparative study of SRG growth within a series of analogous chromophores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anomalous photoinduced transformations in amorphous Ge-based chalcogenide thin films are established as being due to photochemical modification of the surfaces, by photoemission studies. Mass measurements indicate that the giant thickness reduction on irradiation is predominantly due to the loss of material as a result of photogenerated volatile high vapor pressure oxide fractions on the surface. This extrinsic contribution contradicts the models of the phenomenon proposed so far, which are based purely on intrinsic structural transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on the temperature dependent optical band gap changes in the amorphous Ge2Sb2Te5 (GST) films. The behavior of the amorphous GST thin films at low temperatures has been studied. The band gap increment of around 0.2 eV is observed at low temperature (4.2 K) compared to room temperature (300 K). The band gap changes associated with the temperature are completely reversible. The other optical parameters like Urbach energy and Tauc parameter (B-1/2) are studied for different temperatures and discussed. The observed changes in optical band gap (E-g) are fitting to Fan's one phonon approximation. Phonon energy ((h) over bar omega) corresponding to a frequency of 3.59 THz is derived from Fan's approximation, which is close to the reported value of 3.66 THz. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure with above band gap light and thermal annealing at a temperature near to glass transition temperature, of thermally evaporated amorphous (As2S3)(0.87)Sb-0.13 thin films of 1 mu m thickness, were found to be accompanied by structural effects, which in turn, lead to changes in the optical properties. The optical properties of thin films induced by illumination and annealing were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photo darkening or photo bleaching was observed in the film depending upon the conditions of the light exposure or annealing. These changes of the optical properties are assigned to the change of homopolar bond densities. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe(+) ion beam to an ion fluence of about 10(16) ions-cm(-2). Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti(5)Si(3) intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe+ ion beam to an ion fluence of about 1016 ions-cm−2. Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti5Si3 intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical switching behavior of amorphous GexSe35-xTe65 thin film samples has been studied in sandwich geometry of electrodes. It is found that these samples exhibit memory switching behavior, which is similar to that of bulk Ge-Se-Te glasses. As expected, the switching voltages of GexSe35-xTe65 thin film samples are lower compared to those of bulk samples. In both thin film amorphous and bulk glassy samples, the switching voltages are found to increase with the increase in Ge concentration, which is consistent with the increase in network connectivity with the addition of higher coordinated Ge atoms. A sharp increase is seen in the composition dependence of the switching fields of amorphous GexSe35-xTe65 films above x = 21, which can be associated with the stiffness transition. Further, the optical band gap of a-GexSe35-x Te-65 thin film samples, calculated from the absorption spectra, is found to show an increasing trend with the increase in Ge concentration, which is consistent with the variation of switching fields with composition. The increase in structural cross-linking with progressive addition of 4-fold coordinated Ge atoms is one of the main reasons for the observed increase in switching fields as well as band gaps of GexSe35-xTe65 samples. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous thin film Ge15Te85-xSnx (1 <= x <= 5) and Ge17Te83-xSnx (1 <= x <= 4) switching devices have been deposited in sandwich geometry using a flash evaporation technique, with aluminum as the top and bottom electrodes. Electrical switching studies indicate that these films exhibit memory type electrical switching behavior. The switching fields for both the series of samples have been found to decrease with increase in Sn concentration, which confirms that the metallicity effect on switching fields/voltages, commonly seen in bulk glassy chalcogenides, is valid in amorphous chalcogenide thin films also. In addition, there is no manifestation of rigidity percolation in the composition dependence of switching fields of Ge15Te85-xSnx and Ge17Te83-xSnx amorphous thin film samples. The observed composition dependence of switching fields of amorphous Ge15Te85-xSnx and Ge17Te83-xSnx thin films has been understood on the basis of Chemically Ordered Network model. The optical band gap for these samples, calculated from the absorption spectra, has been found to exhibit a decreasing trend with increasing Sn concentration, which is consistent with the composition dependence of switching fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Ge17Te83−xSnx thin films (1 ≤ x ≤ 4) has been done to find their suitability for Phase Change Memory application; Bulk ingots in glassy form are prepared using conventional melt quenching technique and the thin films are coated using flash evaporation technique. Samples are found to exhibit memory type of electrical switching behavior. The switching voltages of Ge17Te83−xSnx thin films have been found to decrease with increase in Sn concentration. The comparatively lower switching voltages of Ge17Te83−xSnx samples, make them suitable candidates for phase change memory applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study deals with the influence of Er-doping level and thermal annealing on the optical properties of amorphous Ge-Ga-S thin films. Nominal compositions of (GeS2)(75)(Ga2S3)(25) doped with high concentrations of 2.1 and 2.4 mol% Er2S3 (corresponding to 1.2 and 1.4 at% Er, respectively) have been chosen for this work. The results have been related to those obtained for the un-doped samples. The values of the refractive index, the absorption coefficient and optical band gap have been determined from the transmittance data. It has been found that the optical band gap of un-doped and 2.1 mol% Er2S3-doped films slightly increases with annealing temperature, whereas at 2.4 mol% Er2S3-doping level it is decreased. The dependences of the optical parameters on the erbium concentration and effect of annealing in the temperature range of 100-200 degrees C have been evaluated and discussed in relation to possible structural changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Si15Te75Ge10 thin film devices reveal the existence of two distinct, stable low-resistance, SET states, achieved by varying the electrical input to the device. The multiple resistance levels can be attributed to multi-stage crystallization, as observed from temperature dependant resistance studies. The devices are tested for their ability to be RESET with minimal resistance degradation; further, they exhibit a minimal drift in the SET resistance value even after several months of switching. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the hydrogenated amorphous silicon (a-Si:H) thin films deposited by DC, pulsed DC (PDC) and RF sputtering process to get insight regarding the total hydrogen concentration (C-H) in the films, configuration of hydrogen bonding, density of the films (decided by the vacancy and void incorporation) and the microstructure factor (R*) which varies with the type of sputtering carried out at the same processing conditions. The hydrogen incorporation is found to be more in RF sputter deposited films as compared to PDC and DC sputter deposited films. All the films were broadly divided into two regions namely vacancy dominated and void dominated regions. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. This demarcation is at C-H = 23 at.% H for RF, C-H = 18 at.% H for PDC and C-H = 14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be as low as 0.029 for DC sputter deposited films at low C-H. For a given C-H, DC sputter deposited films have low R* as compared to PDC and RF sputter deposited films. Signature of dihydride incorporation is found to be more in DC sputter deposited films at low C-H.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous thin chalcogenide Si15Te85-xGex films (x: 5, 9, 10, 11, 12) are prepared by flash evaporation and the temperature dependence of resistance of these films has been studied in the temperature range 25-250 degrees C. All the compositions show a linear variation of resistance in this temperature range. Apart from the linear variation, a sharp reduction in resistance at one or at two distinct temperatures (T-TR1/T-TR2) is seen. Thin films annealed at these temperatures, when subjected to X-ray diffraction studies suggest that the dominant crystalline phase at T-TR1 and at T-TR2 is the same and the two dips are associated with varying levels of crystallization. This is also reflected in the atomic force microscopic (AFM) study. Further, the resistance of these two phases shows no drift when the films are annealed for varying lengths of time (10 min to 120 min) suggesting the stability of the phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Si15Te74Ge11 thin film devices show interesting changes in the switching behavior with changes in the input energy supplied; the input energy determines the extent of crystallization in the active volume, which is reflected in the value of SET resistances. This in turn, determines the trend exhibited by switching voltage (V-t) for different input conditions. The results obtained are analyzed on the basis of the amount of Joule heat generated, which determines the temperature of the active volume. Depending on the final temperature, devices are rendered either in the intermediate state with a resistance of 5*10(2) Omega or the ON state with a resistance of 5*10(1) Omega. (C) 2013 Elsevier B.V. All rights reserved.