963 resultados para ammonium phosphates
Resumo:
This thesis resolved the structural ambiguity surrounding ammonium and hydronium ions in the jarosite mineral group. The vibrational spectra of these two minerals were rationalised with their crystal structures for the first time. In doing so, a theory for dealing with orientational disorder in crystals was proposed.
Resumo:
The structures of the ammonium salts of phenoxyacetic acid, NH4+ C8H6O3- (I), (4-fluorophenoxy)acetic acid NH4+ C8H5FO3- (II) and the herbicidally active (4-chloro-2-methylphenoxy)acetic acid (MCPA), NH4+ C9H8ClO3-. 0.5(H2O) (III) have been determined. All have two-dimensional layered structures based on inter-species ammonium N-H...O hydrogen-bonding associations which give core substructures consisting primarily of conjoined cyclic motifs. Crystals of (I) and (II) are isomorphous with the core comprising R2/1(5), R2/1(4) and centrosymmetric R2/4(8) ring motifs, giving two-dimensional layers lying parallel to (100). In (III), the water molecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O-atoms in an R4/4(12) hydrogen-bonded motif, creating two R3/4(10) rings which together with a conjoined centrosymmetric R2/4(8) ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100). No pi-pi ring associations are present in any of the structures.
Resumo:
A modified inorganic bentonite (Na/Al) based on purified Ca-bentonite was prepared through exchanging Al and Na ions in the interlayer space of Ca-bentonite. The structural properties of purified and modified bentonites were characterized by XRD and SEM analysis. Batch experiments were performed for the adsorption of ammonium nitrogen and different experimental conditions were studied in order to investigate the optimum adsorption conditions. Comparative experiments were also carried out for natural Ca-bentonite (RB), unmodified purified bentonite (PB) and modified purified bentonite (MB). Through the thermodynamic analysis, the ammonium nitrogen adsorption process can be spontaneous, the standard heat was −41.46kJmol −1 , and the adsorption process based on ion exchange adsorption. The ammonium nitrogen adsorption capacity of MB (46.904mg/g) was improved compared to raw bentonite (RB) (26.631mg/g), which was among the highest values of ammonium nitrogen adsorption compared with other adsorbents according to the literatures. The described process provides a potential pathway for the removal of ammonium nitrogen at low concentrations encountered in most natural waters.
Resumo:
In the structure of the title hydrated salt, NH4+·C8H5Cl2O3-·0.5H2O, where the anion derives from (3,5-dichlorophenoxy)acetic acid, the ammonium cation is involved in extensive N-H...O hydrogen bonding with both carboxylate and ether O-atom acceptors giving sheet structures lying parallel to (100). The water molecule of solvation lies on a crystallographic twofold rotation axis and is involved in intra-sheet O-H...Ocarboxylate hydrogen-bonding interactions. In the anion, the oxoacetate side chain assumes an antiperiplanar conformation with the defining C-O-C-C torsion angle = -171.33 (15)°.
Resumo:
The structures of two hydrated salts of 4-aminophenylarsonic acid (p-arsanilic acid), namely ammonium 4-aminophenylarsonate monohydrate, NH4(+)·C6H7AsNO3(-)·H2O, (I), and the one-dimensional coordination polymer catena-poly[[(4-aminophenylarsonato-κO)diaquasodium]-μ-aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter-species N-H...O and arsonate and water O-H...O hydrogen bonds, giving the common two-dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen-bonding interactions involving the para-amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na(+) cation is coordinated by five O-atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square-pyramidal coordination environment. The water bridges generate one-dimensional chains extending along c and extensive interchain O-H...O and N-H...O hydrogen-bonding interactions link these chains, giving an overall three-dimensional structure. The two structures reported here are the first reported examples of salts of p-arsanilic acid.
Resumo:
A new liquid crystalline phase, induced by the addition of small amounts of a non-mesogenic solute (such as dimethyl sulphoxide or methyl iodide) to a quaternary ammonium salt, N-methyl-N,N,N-trioctadecylammonium iodide (MTAI), has been detected by NMR and optical microscopic studies. In some cases, there is a coexistence of nematic and smectic phases. Information on the ordering of the phases in the magnetic field of the spectrometer has been derived from NMR spectra of a dissolved molecule, C-13-enriched methyl iodide. The low order parameter of the pure thermotropic nematic phase of the salt provides first-order spectra of the dissolved oriented molecules. Analyses of spectra of cis,cis-mucononitrile exemplifies the utility of the MTAI nematic phase in the determination of structural parameters of the solute.
Resumo:
High microwave susceptibility of NaH2PO4 . 2H(2)O has been discovered, This hydrated acid phosphate of sodium can be heated upto 1000 K or more when exposed to 2.45 GHz microwaves. Using this, a novel microwave-assisted preparation of a number of important crystalline and glassy materials with NASICON-type chemistry has been accomplished in less than 8 min which is only a fraction of the time required for conventional synthetic procedures, The present single-shot approach to the preparation of phosphates is attractive in terms of its simplicity, rapidity, and general applicability, A ''step-ladder'' heating mechanism has been proposed to account for the high microwave absorbing ability of NaH2PO4 . 2H(2)O.
Resumo:
Infrared correlation functions, have been obtained from the analysis of band shapes of the 1400 cm−1 bending mode of NH4Cl, NH4Br and NH4I in both the Pm3m and Fm3m phases. The NH 4 + ion seems to undergo relatively free rotation in the high temperature Fm3m phases of these halides.
Resumo:
Lithium ammonium sulphate (LAS) undergoes a phase transition at TC1=459.5K from a paraelectric phase (phase I) to a ferroelectric phase (phase II) and again at TC2=283K to a polar ferroelastic phase (phase III). Proton spin lattice relaxation time measured at 10 MHz in powdered LAS in the temperature range 480 to 77K shows discontinuous changes at the two transitions.
Resumo:
The products of corrosion reaction of electrolytic iron in 45% ammonium nitrate solution formed under various conditions of time, temperature and pH have been analysed mainly by Mössbauer spectroscopy, in combination with X-ray diffraction, infrared absorption and electron microscopy techniques. γ-Fe00H is found to be the major product of hydrolytic precipitation at pH > 5.6 while only α-FeOOH is formed at pH < 3.0. In the pH range 3.0 < pH < 5.0, α-Fe00H and ferrihydrite are both formed. However, once the nuclei of α-Fe00H are formed under low pH conditions, their growth is favoured even in the otherwise unfavourable slightly acidic medium, resulting in a hydrous α-Fe00H which has two distinct hyperfine fields at the 57Fe nucleus. Magnetite is always formed in the vicinity of the metal and its rate of formation on the surface increases with temperature. α-Fe203 is the major product of hydrolytic precipitation at temperatures >80C. The possible mechanisms for the formation of each of the corrosion products are discussed.
Resumo:
E.S.R. investigations of γ-irradiated ferroelectric Sodium ammonium selenate, NaNH4SeO4•2H2O and its deuteriated analogue in powder and single crystal forms have led to a deeper understanding of the nature of the ferroelectric transition of 180 K. A number of paramagnetic species formed due to γ-irradiation have been identified on the basis of their g-factors and hyperfine features from 77Se. The radical SeO4 has been used as a microprobe in studying the phase transition.
Resumo:
A comparison with the alkali halides suggests that all the ammonium halides should occur in the NaCl centre-of-mass structure. Experimentally, at room temperature and atmospheric pressure, only NH4I crystallizes in this structure, while NH4F is found in the ZnO structure, and NH4C1 and NH4Br occur in the CsCl structure. We show that a distributed charge on the NH4+ ion can explain these structures. Taking charges of + 0.2e on each of the five atoms in NH4+, as suggested by other studies, we have recomputed the Madelung energy in the cases of interest. A full ionic theory including electrostatic, van der Waals and repulsive interactions then explains the centre-of-mass structures of all the four ammonium halides. The thermal and pressure transitions are also explained reasonably well. The calculated phase diagram of NH4F compares well with experiment. Barring the poorly understood NH4F(II) phase, which is beyond the scope of this work, the other features are in qualitative agreement. In particular, the theory correctly predicts a pressure transition at room temperature from the ZnO structure directly to the CsCl structure without an intermediate NaCl phase. A feature of our approach is that we do not need to invoke hydrogen bonding in NH4F.
Resumo:
An investigation of the phase transitions at high pressures in the alums mentioned in the title has been carried out using EPR of the Cr3+ ion (at the trivalent metal ion site). It is observed that at ambient as well as at high pressures there is a change of slope in the linear variations of the zero field splitting with temperature and that the low temperature phase is characterised by a large number of lines in the EPR spectra. The transition temperature shows a large positive shift with pressure, for both the alums. All these facts are explained in terms of our model of the origin of the trigonal field at the trivalent metal ion site as well as the details of the motion of NH4+ ion.
Resumo:
A binary mixture of ammonium perchlorate-sodium nitrate in molar proportion undergoes partial fusion at 223°C and the transformation of the mixture to sodium perchlorate-ammonium nitrate occurs in the broad endothermic region. The mixture was heated and quenched at various temperatures in a differential thermal analysis assembly. Thermogravimetric analysis, X-ray diffraction, and infrared spectroscopic techniques were used to determine the composition of the quenched sample in order to explain the overall thermal phenomenon. Visual observations of the morphological changes that occur during the course of heating were made using a hot-stage microscope, 30–350°C.
Resumo:
This study investigates the mechanism of action of transition metal chromites on the decomposition of ammonium perchlorate.