996 resultados para ammassi galassie aloni relitti radio cluster
Resumo:
Gli ammassi di galassie sono le strutture più grandi che possiamo osservare nell’Universo. La loro formazione deriva direttamente dalla crescita delle perturbazioni primordiali di densità e dal loro conseguente collasso gravitazionale indotto appunto dalla gravità. Gli ammassi di galassie sono molto importanti in Astrofisica in quanto possono essere considerati come dei laboratori per lo studio di molti aspetti fisici legati al gas, all’ICM e all’evoluzione delle galassie. Lo studio degli ammassi di galassie è molto importante anche per la Cosmologia in quanto è possibile effettuare delle stime sui parametri cosmologici ed ottenere dei vincoli sulla geometria dell’Universo andando a valutare la loro massa e la loro distribuzione nell’Universo. Diventa quindi fondamentale l’utilizzo di algoritmi che ci permettano di utilizzare i dati ottenuti dalle osservazioni per cercare ed individuare gli ammassi di galassie in modo tale da definire meglio la loro distribuzione nell’Universo. Le più recenti survey di galassie ci forniscono molteplici informazioni a riguardo delle galassie, come ad esempio la loro magnitudine in varie bande osservative, il loro colore, la loro velocità ecc. In questo lavoro abbiamo voluto testare la performance di un algoritmo Optimal Filtering nella ricerca degli ammassi di galassie utilizzando prima solo l’informazione della magnitudine delle galassie e successivamente anche l’informazione sul loro colore. Quello che abbiamo voluto fare, quindi, è stato valutare se l’utilizzo combinato della magnitudine delle galassie e del loro colore permette all’algoritmo di individuare più facilmente, e in numero maggiore, gli ammassi di galassie.
Resumo:
We present the results on the distribution and kinematics of HI gas with higher sensitivity and in one case of higher spectral resolution as well than reported earlier, of three irregular galaxies CGCG 097073, 097079 and 097087 (UGC 06697) in the cluster Abell 1367. These galaxies are known to exhibit long (50 - 75 kpc) tails of radio continuum and optical emission lines (H alpha) pointing away from the cluster centre and arcs of starformation on the opposite sides of the tails, These features as well as the HI properties, with two of the galaxies (CGCG 097073 and 097079) exhibiting sharper gradients in HI intensity on the side of the tails, are consistent with the HI gas being affected by the ram pressure of the intracluster medium. However the HI emission in all the three galaxies extends to much smaller distances than the radio-continuum and H alpha tails, and are possibly still bound to the parent galaxies. Approximately 20 - 30 per cent of the HI mass is seen to accumulate on the downstream side due to the effects of ram pressure.
Resumo:
Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P-jet = 10(44-45) erg s(-1), typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.
Resumo:
We present optical and near-infrared (NIR) photometry and NIR spectroscopy of SN 2004am, the only optically detected supernova (SN) in M82. These demonstrate that SN 2004am was a highly reddened Type II-P SN similar to the low-luminosity Type II-P events such as SNe 1997D and 2005cs. We show that SN 2004am was located coincident with the obscured super star cluster M82-L, and from the cluster age infer a progenitor mass of 12{^{+ 7}_{- 3}} M⊙. In addition to this, we present a high spatial resolution Gemini-North Telescope K-band adaptive optics image of the site of SN 2008iz and a second transient of uncertain nature, both detected so far only at radio wavelengths. Using image subtraction techniques together with archival data from the Hubble Space Telescope, we are able to recover a NIR transient source coincident with both objects. We find the likely extinction towards SN 2008iz to be not more than AV ˜ 10. The nature of the second transient remains elusive and we regard an extremely bright microquasar in M82 as the most plausible scenario.
Resumo:
We present results of a sensitive Chandra X-ray observation and Spitzer mid-infrared (mid-IR) observations of the IR cluster lying north of the NGC 2071 reflection nebula in the Orion B molecular cloud. We focus on the dense cluster core known as NGC 2071-IR, which contains at least nine IR sources within a 40 `` x 40 `` region. This region shows clear signs of active star formation including powerful molecular outflows, Herbig-Haro objects, and both OH and H(2)O masers. We use Spitzer Infrared Array Camera (IRAC) images to aid in X-ray source identification and to determine young stellar object (YSO) classes using mid-IR colors. Spitzer IRAC colors show that the luminous source IRS 1 is a class I protostar. IRS 1 is believed to be driving a powerful bipolar molecular outflow and may be an embedded B-type star or its progenitor. Its X-ray spectrum reveals a fluorescent Fe emission line at 6.4 keV, arising in cold material near the protostar. The line is present even in the absence of large flares, raising questions about the nature of the ionizing mechanism responsible for producing the 6.4 keV fluorescent line. Chandra also detects X-ray sources at or near the positions of IRS 2, IRS 3, IRS 4, and IRS 6 and a variable X-ray source coincident with the radio source VLA 1, located just 2 `` north of IRS 1. No IR data are yet available to determine a YSO classification for VLA 1, but its high X-ray absorption shows that it is even more deeply embedded than IRS 1, suggesting that it could be an even younger, less-evolved protostar.
Resumo:
Wireless Sensor Networks (WSN) are a special kind of ad-hoc networks that is usually deployed in a monitoring field in order to detect some physical phenomenon. Due to the low dependability of individual nodes, small radio coverage and large areas to be monitored, the organization of nodes in small clusters is generally used. Moreover, a large number of WSN nodes is usually deployed in the monitoring area to increase WSN dependability. Therefore, the best cluster head positioning is a desirable characteristic in a WSN. In this paper, we propose a hybrid clustering algorithm based on community detection in complex networks and traditional K-means clustering technique: the QK-Means algorithm. Simulation results show that QK-Means detect communities and sub-communities thus lost message rate is decreased and WSN coverage is increased. © 2012 IEEE.
Resumo:
We report a study of the stellar content of the near-infrared (NIR) cluster [DBS2003] 157 embedded in the extended H ii region GAL 331.31-00.34, which is associated with the IRAS source 16085-5138. JHK photometry was carried out in order to identify potential ionizing candidates, and the follow-up NIR spectroscopy allowed the spectral classification of some sources, including two O-type stars. A combination of NIR photometry and spectroscopy data was used to obtain the distance of these two stars, with the method of spectroscopic parallax: IRS 298 (O6 V, 3.35 +/- 0.61 kpc) and IRS 339 (O9 V, 3.24 +/- 0.56 kpc). Adopting the average distance of 3.29 +/- 0.58 kpc and comparing the Lyman continuum luminosity of these stars with that required to account for the radio continuum flux of the H ii region, we conclude that these two stars are the ionizing sources of GAL 331.31-00.34. Young stellar objects (YSOs) were searched by using our NIR photometry and mid-infrared (MIR) data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) survey. The analysis of NIR and MIR colourcolour diagrams resulted in 47 YSO candidates. The GLIMPSE counterpart of IRAS 16085-5138, which presents IRAS colour indices compatible with an ultracompact H ii region, has been identified. The analysis of its spectral energy distribution between 2 and m revealed that this source shows a spectral index a= 3.6 between 2 and m, which is typical of a YSO immersed in a protostellar envelope. Lower limits to the bolometric luminosity and the mass of the embedded protostar have been estimated as L= 7.7 x 10(3) L? and M= 10 M?, respectively, which correspond to a B0B1 V zero-age main sequence star.
Resumo:
Galaxy clusters occupy a special position in the cosmic hierarchy as they are the largest bound structures in the Universe. There is now general agreement on a hierarchical picture for the formation of cosmic structures, in which galaxy clusters are supposed to form by accretion of matter and merging between smaller units. During merger events, shocks are driven by the gravity of the dark matter in the diffuse barionic component, which is heated up to the observed temperature. Radio and hard-X ray observations have discovered non-thermal components mixed with the thermal Intra Cluster Medium (ICM) and this is of great importance as it calls for a “revision” of the physics of the ICM. The bulk of present information comes from the radio observations which discovered an increasing number of Mpcsized emissions from the ICM, Radio Halos (at the cluster center) and Radio Relics (at the cluster periphery). These sources are due to synchrotron emission from ultra relativistic electrons diffusing through µG turbulent magnetic fields. Radio Halos are the most spectacular evidence of non-thermal components in the ICM and understanding the origin and evolution of these sources represents one of the most challenging goal of the theory of the ICM. Cluster mergers are the most energetic events in the Universe and a fraction of the energy dissipated during these mergers could be channelled into the amplification of the magnetic fields and into the acceleration of high energy particles via shocks and turbulence driven by these mergers. Present observations of Radio Halos (and possibly of hard X-rays) can be best interpreted in terms of the reacceleration scenario in which MHD turbulence injected during these cluster mergers re-accelerates high energy particles in the ICM. The physics involved in this scenario is very complex and model details are difficult to test, however this model clearly predicts some simple properties of Radio Halos (and resulting IC emission in the hard X-ray band) which are almost independent of the details of the adopted physics. In particular in the re-acceleration scenario MHD turbulence is injected and dissipated during cluster mergers and thus Radio Halos (and also the resulting hard X-ray IC emission) should be transient phenomena (with a typical lifetime <» 1 Gyr) associated with dynamically disturbed clusters. The physics of the re-acceleration scenario should produce an unavoidable cut-off in the spectrum of the re-accelerated electrons, which is due to the balance between turbulent acceleration and radiative losses. The energy at which this cut-off occurs, and thus the maximum frequency at which synchrotron radiation is produced, depends essentially on the efficiency of the acceleration mechanism so that observations at high frequencies are expected to catch only the most efficient phenomena while, in principle, low frequency radio surveys may found these phenomena much common in the Universe. These basic properties should leave an important imprint in the statistical properties of Radio Halos (and of non-thermal phenomena in general) which, however, have not been addressed yet by present modellings. The main focus of this PhD thesis is to calculate, for the first time, the expected statistics of Radio Halos in the context of the re-acceleration scenario. In particular, we shall address the following main questions: • Is it possible to model “self-consistently” the evolution of these sources together with that of the parent clusters? • How the occurrence of Radio Halos is expected to change with cluster mass and to evolve with redshift? How the efficiency to catch Radio Halos in galaxy clusters changes with the observing radio frequency? • How many Radio Halos are expected to form in the Universe? At which redshift is expected the bulk of these sources? • Is it possible to reproduce in the re-acceleration scenario the observed occurrence and number of Radio Halos in the Universe and the observed correlations between thermal and non-thermal properties of galaxy clusters? • Is it possible to constrain the magnetic field intensity and profile in galaxy clusters and the energetic of turbulence in the ICM from the comparison between model expectations and observations? Several astrophysical ingredients are necessary to model the evolution and statistical properties of Radio Halos in the context of re-acceleration model and to address the points given above. For these reason we deserve some space in this PhD thesis to review the important aspects of the physics of the ICM which are of interest to catch our goals. In Chapt. 1 we discuss the physics of galaxy clusters, and in particular, the clusters formation process; in Chapt. 2 we review the main observational properties of non-thermal components in the ICM; and in Chapt. 3 we focus on the physics of magnetic field and of particle acceleration in galaxy clusters. As a relevant application, the theory of Alfv´enic particle acceleration is applied in Chapt. 4 where we report the most important results from calculations we have done in the framework of the re-acceleration scenario. In this Chapter we show that a fraction of the energy of fluid turbulence driven in the ICM by the cluster mergers can be channelled into the injection of Alfv´en waves at small scales and that these waves can efficiently re-accelerate particles and trigger Radio Halos and hard X-ray emission. The main part of this PhD work, the calculation of the statistical properties of Radio Halos and non-thermal phenomena as expected in the context of the re-acceleration model and their comparison with observations, is presented in Chapts.5, 6, 7 and 8. In Chapt.5 we present a first approach to semi-analytical calculations of statistical properties of giant Radio Halos. The main goal of this Chapter is to model cluster formation, the injection of turbulence in the ICM and the resulting particle acceleration process. We adopt the semi–analytic extended Press & Schechter (PS) theory to follow the formation of a large synthetic population of galaxy clusters and assume that during a merger a fraction of the PdV work done by the infalling subclusters in passing through the most massive one is injected in the form of magnetosonic waves. Then the processes of stochastic acceleration of the relativistic electrons by these waves and the properties of the ensuing synchrotron (Radio Halos) and inverse Compton (IC, hard X-ray) emission of merging clusters are computed under the assumption of a constant rms average magnetic field strength in emitting volume. The main finding of these calculations is that giant Radio Halos are naturally expected only in the more massive clusters, and that the expected fraction of clusters with Radio Halos is consistent with the observed one. In Chapt. 6 we extend the previous calculations by including a scaling of the magnetic field strength with cluster mass. The inclusion of this scaling allows us to derive the expected correlations between the synchrotron radio power of Radio Halos and the X-ray properties (T, LX) and mass of the hosting clusters. For the first time, we show that these correlations, calculated in the context of the re-acceleration model, are consistent with the observed ones for typical µG strengths of the average B intensity in massive clusters. The calculations presented in this Chapter allow us to derive the evolution of the probability to form Radio Halos as a function of the cluster mass and redshift. The most relevant finding presented in this Chapter is that the luminosity functions of giant Radio Halos at 1.4 GHz are expected to peak around a radio power » 1024 W/Hz and to flatten (or cut-off) at lower radio powers because of the decrease of the electron re-acceleration efficiency in smaller galaxy clusters. In Chapt. 6 we also derive the expected number counts of Radio Halos and compare them with available observations: we claim that » 100 Radio Halos in the Universe can be observed at 1.4 GHz with deep surveys, while more than 1000 Radio Halos are expected to be discovered in the next future by LOFAR at 150 MHz. This is the first (and so far unique) model expectation for the number counts of Radio Halos at lower frequency and allows to design future radio surveys. Based on the results of Chapt. 6, in Chapt.7 we present a work in progress on a “revision” of the occurrence of Radio Halos. We combine past results from the NVSS radio survey (z » 0.05 − 0.2) with our ongoing GMRT Radio Halos Pointed Observations of 50 X-ray luminous galaxy clusters (at z » 0.2−0.4) and discuss the possibility to test our model expectations with the number counts of Radio Halos at z » 0.05 − 0.4. The most relevant limitation in the calculations presented in Chapt. 5 and 6 is the assumption of an “averaged” size of Radio Halos independently of their radio luminosity and of the mass of the parent clusters. This assumption cannot be released in the context of the PS formalism used to describe the formation process of clusters, while a more detailed analysis of the physics of cluster mergers and of the injection process of turbulence in the ICM would require an approach based on numerical (possible MHD) simulations of a very large volume of the Universe which is however well beyond the aim of this PhD thesis. On the other hand, in Chapt.8 we report our discovery of novel correlations between the size (RH) of Radio Halos and their radio power and between RH and the cluster mass within the Radio Halo region, MH. In particular this last “geometrical” MH − RH correlation allows us to “observationally” overcome the limitation of the “average” size of Radio Halos. Thus in this Chapter, by making use of this “geometrical” correlation and of a simplified form of the re-acceleration model based on the results of Chapt. 5 and 6 we are able to discuss expected correlations between the synchrotron power and the thermal cluster quantities relative to the radio emitting region. This is a new powerful tool of investigation and we show that all the observed correlations (PR − RH, PR − MH, PR − T, PR − LX, . . . ) now become well understood in the context of the re-acceleration model. In addition, we find that observationally the size of Radio Halos scales non-linearly with the virial radius of the parent cluster, and this immediately means that the fraction of the cluster volume which is radio emitting increases with cluster mass and thus that the non-thermal component in clusters is not self-similar.
Resumo:
In this thesis the use of widefield imaging techniques and VLBI observations with a limited number of antennas are explored. I present techniques to efficiently and accurately image extremely large UV datasets. Very large VLBI datasets must be reduced into multiple, smaller datasets if today’s imaging algorithms are to be used to image them. I present a procedure for accurately shifting the phase centre of a visibility dataset. This procedure has been thoroughly tested and found to be almost two orders of magnitude more accurate than existing techniques. Errors have been found at the level of one part in 1.1 million. These are unlikely to be measurable except in the very largest UV datasets. Results of a four-station VLBI observation of a field containing multiple sources are presented. A 13 gigapixel image was constructed to search for sources across the entire primary beam of the array by generating over 700 smaller UV datasets. The source 1320+299A was detected and its astrometric position with respect to the calibrator J1329+3154 is presented. Various techniques for phase calibration and imaging across this field are explored including using the detected source as an in-beam calibrator and peeling of distant confusing sources from VLBI visibility datasets. A range of issues pertaining to wide-field VLBI have been explored including; parameterising the wide-field performance of VLBI arrays; estimating the sensitivity across the primary beam both for homogeneous and heterogeneous arrays; applying techniques such as mosaicing and primary beam correction to VLBI observations; quantifying the effects of time-average and bandwidth smearing; and calibration and imaging of wide-field VLBI datasets. The performance of a computer cluster at the Istituto di Radioastronomia in Bologna has been characterised with regard to its ability to correlate using the DiFX software correlator. Using existing software it was possible to characterise the network speed particularly for MPI applications. The capabilities of the DiFX software correlator, running on this cluster, were measured for a range of observation parameters and were shown to be commensurate with the generic performance parameters measured. The feasibility of an Italian VLBI array has been explored, with discussion of the infrastructure required, the performance of such an array, possible collaborations, and science which could be achieved. Results from a 22 GHz calibrator survey are also presented. 21 out of 33 sources were detected on a single baseline between two Italian antennas (Medicina to Noto). The results and discussions presented in this thesis suggest that wide-field VLBI is a technique whose time has finally come. Prospects for exciting new science are discussed in the final chapter.
Resumo:
The purpose of this thesis is to investigate the strength and structure of the magnetized medium surrounding radio galaxies via observations of the Faraday effect. This study is based on an analysis of the polarization properties of radio galaxies selected to have a range of morphologies (elongated tails, or lobes with small axial ratios) and to be located in a variety of environments (from rich cluster core to small group). The targets include famous objects like M84 and M87. A key aspect of this work is the combination of accurate radio imaging with high-quality X-ray data for the gas surrounding the sources. Although the focus of this thesis is primarily observational, I developed analytical models and performed two- and three-dimensional numerical simulations of magnetic fields. The steps of the thesis are: (a) to analyze new and archival observations of Faraday rotation measure (RM) across radio galaxies and (b) to interpret these and existing RM images using sophisticated two and three-dimensional Monte Carlo simulations. The approach has been to select a few bright, very extended and highly polarized radio galaxies. This is essential to have high signal-to-noise in polarization over large enough areas to allow computation of spatial statistics such as the structure function (and hence the power spectrum) of rotation measure, which requires a large number of independent measurements. New and archival Very Large Array observations of the target sources have been analyzed in combination with high-quality X-ray data from the Chandra, XMM-Newton and ROSAT satellites. The work has been carried out by making use of: 1) Analytical predictions of the RM structure functions to quantify the RM statistics and to constrain the power spectra of the RM and magnetic field. 2) Two-dimensional Monte Carlo simulations to address the effect of an incomplete sampling of RM distribution and so to determine errors for the power spectra. 3) Methods to combine measurements of RM and depolarization in order to constrain the magnetic-field power spectrum on small scales. 4) Three-dimensional models of the group/cluster environments, including different magnetic field power spectra and gas density distributions. This thesis has shown that the magnetized medium surrounding radio galaxies appears more complicated than was apparent from earlier work. Three distinct types of magnetic-field structure are identified: an isotropic component with large-scale fluctuations, plausibly associated with the intergalactic medium not affected by the presence of a radio source; a well-ordered field draped around the front ends of the radio lobes and a field with small-scale fluctuations in rims of compressed gas surrounding the inner lobes, perhaps associated with a mixing layer.
Resumo:
A fraction of galaxy clusters host Mpc-scale Radio
Halos (RH), generated by ultrarelativistic electrons in the
magnetized intra cluster medium (ICM). In the current
view they trace turbulent regions in merging clusters, where relativistic particles are trapped and accelerated. This model has clear expectations about the statistical properties of RHs. To test these expectations large mass-selected samples of galaxy clusters with adequate radio and X-ray data are necessary. We used the Planck SZ cluster catalogue as suitable starting point of our investigation, selecting clusters with M500>6x10^14 Msun at 0.08
Resumo:
In ambiente astrofsico i principali meccanismi di produzione di energia sono associati a cariche elettriche in moto non uniforme. In generale è noto che cariche libere emettono radiazione elettromagnetica solamente se accelerate:una carica stazionaria ha campo elettrico costante e campo magnetico nullo, quindi non irradia, e lo stesso si ha per una carica in moto uniforme (difatti basta porsi nel sistema di riferimento solidale ad essa perchè si ricada nel caso precedente). In questo contesto si inserisce la radiazione di Bremsstrahlung, caratteristica dei plasmi astrofsici molto caldi e dovuta all'interazione coulombiana tra gli ioni e gli elettroni liberi del gas ionizzato. Data la piccola massa dell'elettrone, durante l'interazione lo ione non viene accelerato in maniera apprezzabile, quindi è possibile trattare il problema come quello di cariche elettriche negative decelerate dal campo coulombiano stazionario di un mare di cariche positive. Non a caso in tedesco la parola Bremsstrahlung signifca radiazione di frenamento". L'emissione di Bremsstrahlung è detta anche free-free emission poichè l'elettrone perde energia passando da uno stato non legato a un altro stato non legato. Questo processo di radiazione avviene nel continuo, su un intervallo di frequenze che va dal radio ai raggi gamma. In astrofsica è il principale meccanismo di raffreddamento per i plasmi a temperature elevate: si osserva nelle regioni HII, sottoforma di emissione radio, ma anche nelle galactic hot-coronae, nelle stelle binarie X, nei dischi di accrescimento intorno alle stelle evolute e ai buchi neri, nel gas intergalattico degli ammassi di galassie e nelle atmosfere di gas caldo in cui sono immerse le galassie ellittiche, perlopiù sottoforma di emissione X. La trattazione del fenomeno sarà estesa anche al caso relativistico che, per esempio, trova applicazione nell'emissione dei ares solari e della componente elettronica dei raggi cosmici. Infine la radiazione di Bremsstrahlung, oltre a permettere, solamente mediante misure spettroscopiche, di ricavare la temperatura e la misura di emissione di una nube di plasma, consente di effettuare una vera e propria "mappatura" del campo gravitazionale dei sistemi che hanno gas caldo.
Resumo:
Lo spazio fra le stelle nelle galassie non è vuoto, ma è composto da gas rarefatto, particelle di polvere, un campo magnetico, elettroni, protoni e altri nuclei atomici relativistici; spesso questi elementi possono essere considerati come un’unica entità di- namica: il mezzo interstellare o più semplicemente ISM. Nel primo capitolo vedremo come il mezzo si distribuisce generalmente all’interno delle galassie a spirale, in fasce di temperatura sempre minore man mano che ci si allontana dal centro (HIM, WIM, WNM, CNM). La conoscenza della distribuzione del mezzo è utile per poter comprendere maggiormente i processi di emissione e le varie zone in cui questi avvengono in una tipica galassia a spirale, che è lo scopo di questa tesi. L’ISM infatti entra in gioco in quasi tutti i processi emissivi, in tutte le bande di emis- sione dello spettro elettromagnetico che andremo ad analizzare. Il nostro modo di vedere le galassie dell’universo è molto cambiato infatti nel corso dell’ultimo secolo: l’utilizzo di nuovi telescopi ci ha permesso di andare ad osservare le galassie anche in bande dello spettro diverse da quella visibile, in modo da raccogliere informazioni impossibili da ottenere con la sola banda ottica. Nel secondo capitolo andremo ad analizzare cinque bande di emissione (banda X, ot- tica, radio, gamma e infrarossa) e vedremo come appaiono tipicamente le galassie a spirale a lunghezze d’onda differenti, quali sono i processi in gioco e come il mezzo interstellare sia fondamentale in quasi ogni tipo di processo. A temperature elevate, esso è responsabile dell’emissione X della galassia, mentre re- gioni più fredde, formate da idrogeno ionizzato, sono responsabili delle righe di emis- sione presenti nello spettro ottico. Il campo magnetico, tramite le sue interazioni con elettroni relativistici è la principale fonte dell’emissione radio nel continuo di una galas- sia a spirale, mentre quella in riga è dovuta a idrogeno atomico o a gas freddo. Vedremo infine come raggi cosmici e polvere, che fanno sempre parte del mezzo inter- stellare, siano rispettivamente la causa principale dell’emissione gamma e infrarossa.
Resumo:
La radiazione elettromagnetica è una singola entità, come si deduce dall’universalità delle leggi di Maxwell, nonostante lo spettro elettromagnetico sia caratterizzato da regioni a cui si associano nomi differenti. Questo implica l’esistenza di un meccanismo fondamentale comune alla base di tutti i processi di radiazione, che si identifica in una carica in moto non uniforme. Infatti una carica stazionaria ha un campo elettrico costante e un campo magnetico nullo, quindi non irradia; lo stesso vale per una carica in moto uniforme. La radiazione di Bremsstrahlung, che avviene nel continuo, spaziando dal radio ai raggi gamma, fu scoperta negli anni ’30 del secolo scorso, in seguito all’osservazione che la perdita di energia che subisce un elettrone attraversando la materia non è data unicamente dalla ionizzazione: l’elettrone, accelerato dal nucleo ionizzato, irradia e, di conseguenza, viene frenato. Letteralmente “Bremsstrahlung“ significa “radiazione di frenamento” e in astrofisica rappresenta il principale meccanismo di raffreddamento di un plasma a temperature molto elevate; nel seguente elaborato tale plasma sarà considerato monoatomico e completamente ionizzato. Dall’analisi dello spettro di Bremsstrahlung si possono rilevare la temperatura e la misura di emissione della nube di gas osservato, che consentono di ricavare la densità, la massa e la luminosità della nube stessa. Nel capitolo 1 vengono riportate la descrizione di questo processo di radiazione e le principali formule che lo caratterizzano, illustrate in ambiente semiclassico (Bremsstrahlung termica) e in ambiente relativistico (Bremsstrahlung relativistica). Nel capitolo 2 segue la trattazione di alcuni esempi astrofisici: le regioni HII; il gas intergalattico degli ammassi di galassie ed emettono principalmente nella banda X; le galassie Starburst; le binarie X; la componente elettronica dei raggi cosmici e i brillamenti solari; infine un accenno agli oggetti di Herbig-Haro.