101 resultados para alkynes
Resumo:
ABSTRACT: In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence) spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.
Resumo:
Boiling points (T-B) of acyclic alkynes are predicted from their boiling point numbers (Y-BP) with the relationship T-B(K) = -16.802Y(BP)(2/3) + 337.377Y(BP)(1/3) - 437.883. In turn, Y-BP values are calculated from structure using the equation Y-BP = 1.726 + A(i) + 2.779C + 1.716M(3) + 1.564M + 4.204E(3) + 3.905E + 5.007P - 0.329D + 0.241G + 0.479V + 0.967T + 0.574S. Here A(i) depends on the substitution pattern of the alkyne and the remainder of the equation is the same as that reported earlier for alkanes. For a data set consisting of 76 acyclic alkynes, the correlation of predicted and literature T-B values had an average absolute deviation of 1.46 K, and the R-2 of the correlation was 0.999. In addition, the calculated Y-BP values can be used to predict the flash points of alkynes.
Resumo:
Boiling points (T B) of acyclic alkynes are predicted from their boiling point numbers (Y BP) with the relationship T B(K) = -16.802Y BP2/3 + 337.377Y BP1/3 - 437.883. In turn, Y BP values are calculated from structure using the equation Y BP = 1.726 + Ai + 2.779C + 1.716M3 + 1.564M + 4.204E3 + 3.905E + 5.007P - 0.329D + 0.241G + 0.479V + 0.967T + 0.574S. Here Ai depends on the substitution pattern of the alkyne and the remainder of the equation is the same as that reported earlier for alkanes. For a data set consisting of 76 acyclic alkynes, the correlation of predicted and literature T B values had an average absolute deviation of 1.46 K, and the R² of the correlation was 0.999. In addition, the calculated Y BP values can be used to predict the flash points of alkynes.
Resumo:
In the last decade considerable attention has been devoted to the rewarding use of Green Chemistry in various synthetic processes and applications. Green Chemistry is of special interest in the synthesis of expensive pharmaceutical products, where suitable adoption of “green” reagents and conditions is highly desirable. Our project especially focused in a search for new green radical processes which might also find useful applications in the industry. In particular, we have explored the possible adoption of green solvents in radical Thiol-Ene and Thiol-Yne coupling reactions, which to date have been normally performed in “ordinary” organic solvents such as benzene and toluene, with the primary aim of applying those coupling reactions to the construction of biological substrates. We have additionally tuned adequate reaction conditions which might enable achievement of highly functionalised materials and/or complex bioconjugation via homo/heterosequence. Furthermore, we have performed suitable theoretical studies to gain useful chemical information concerning mechanistic implications of the use of green solvents in the radical Thiol-Yne coupling reactions.
Resumo:
A range of arylgold compounds have been synthesized and investigated as single-component catalysts for the hydrophenoxylation of unactivated internal alkynes. Both carbene and phosphine-ligated compounds were screened as part of this work, and the most efficient catalysts contained either JohnPhos or IPr/SIPr. Phenols bearing either electron-withdrawing or electron-donating groups were efficiently added using these catalysts. No silver salts, acids, or solvents were needed for the catalysis, and either microwave or conventional heating afforded moderate to excellent yields of the vinyl ethers.
Resumo:
In the literature, some transition metal salts have been used as soft Lewis acids to activate alkynes toward nucleophilic attack. For example, Pt(II), Au(I) and Pd(II) catalysts can catalyze cycloisomerization reactions of alkynyl compounds to give a variety of cyclic products. In order to expand the scope of these reactions, in chapter 2 of this dissertation, several alkynyl epoxides were isomerized to cyclic allyl vinyl ethers using PtCl2 as the catalyst. Three of these allyl vinyl ethers were hydrolyzed to 2-hydroxymorpholine derivatives and two were converted to piperidine derivatives by thermal Claisen rearrangement. In order to find more benign and inexpensive catalysts for these types of reactions, in chapter 3 of this dissertation, BiCl3 was used to catalyze the isomerization of eight enynes to pyrrolidine derivatives. This reaction was normally catalyzed by expensive noble metal catalysts, such as Pd(II), Pt(II) and Au(I). All the cyclic products are valuable intermediates in the synthesis of bioactive molecules, these soft Lewis acid catalyzed cycloisomerization may find applications in the synthesis of bioactive molecules.
Resumo:
Platinum nanoparticles supported on titania efficiently catalyzed the diboration of alkynes and alkenes under solvent- and ligand-free conditions in air. The cis-1,2-diborylalkenes and 1,2-diborylalkanes were obtained in moderate to excellent yields following, in most cases, a simple filtration workup protocol. The versatility of the cis-1,2-diboronvinyl compounds was demonstrated in a series of organic transformations, including the Suzuki–Miyaura cross coupling and the boron–halogen exchange.
Resumo:
Inexpensive and commercially available nano-powder magnetite is an excellent catalyst for the addition of acid chlorides to internal and terminal alkynes, yielding the corresponding chlorovinyl ketones in good yields. The process has been applied to the synthesis of 5-chloro-4-arylcyclopent-2-enones, 3-aryl-1H-cyclopenta[a]naphthalen-1-ones, and (E)-3-alkylidene-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ones, just by changing the nature of the starting acid chloride or the alkyne. All tested processes elapse with an acceptable or excellent regio- and stereo-selectivity. Moreover, the use of the iridium impregnated on magnetite catalyst permits the integration of the chloroacylation process with a second dehydrochlorination–annulation process to yield, in one-pot, 1-aryl-2,4-dialkylfurans in good yields, independently of the nature of the starting reagents, and including the heteroaromatic ones.
Resumo:
Copper-impregnated magnetite is a versatile heterogeneous catalytic system for the synthesis of 1,3-diynes by the homocoupling of terminal alkynes. This catalyst does not require the use of pressurized oxygen as the oxidant and it does not need a solvent or harsh conditions to give the expected products. Moreover, the catalyst can be removed from the reaction medium simply by using a magnet. The reaction occurs at the lowest copper loading reported for any heterogeneous catalyst.
Resumo:
A highly regio- and stereoselective oxime palladacycle/imidazolinium-catalyzed head to head dimerization of terminal aryl alkynes in water is presented. The reaction, which is carried out at 130 °C under microwave irradiation in the presence of 1,3-bis-(2,6-diisopropylphenyl)imidazolinium chloride as ligand, triethylamine as base, and TBAB as surfactant, allows the synthesis of (E)-1,4-enynes as single stereoisomers in good isolated yields.
Resumo:
[Rh(OH)6]3− intercalated Ni–Zn mixed basic salt (Rh/NiZn) acts as an efficient catalyst for the hydrophenylation of internal alkynes with arylboronic acids under mild conditions. The turnover number per Rh site approached 740 in the reaction between 4-octyne and phenylboronic acid. The catalytic monomeric Rh(III) complex is stabilised within the NiZn interlayers, attributable to a strong electrostatic interaction, promoting its re-use.
Resumo:
Acknowledgements The support of the Spanish Government (projects CTQ2014-52956-C3-2-R and CTQ2014-52956-C3-3-R) is recognized.
Resumo:
A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2-alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures.