992 resultados para algorithm Context
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.
Resumo:
Multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the benefits gained from multiple interfaces come at an expense—that being higher energy consumption in an era where mobile devices need to be energy compliant. One promising solution is the usage of short-range cooperative communication as an overlay for infrastructure-based networks taking advantage of its context information. However, the node discovery mechanism, which is pivotal to the bearer establishment process, still represents a major burden in terms of the total energy budget. In this paper, we propose a technology agnostic approach towards enhancing the MAC energy ratings by presenting a context-aware node discovery (CANDi) algorithm, which provides a priori knowledge towards the node discovery mechanism by allowing it to search nodes in the near vicinity at the ‘right time and at the right place’. We describe the different beacons required for establishing the cooperation, as well as the context information required, including battery level, modes, location and so on. CANDi uses the long-range network (WiMAX and WiFi) to distribute the context information about cooperative clusters (Ultra-wideband-based) in the vicinity. The searching nodes can use this context in locating the cooperative clusters/nodes, which facilitates the establishing of short-range connections. Analytical and simulation results are obtained, and the energy saving gains are further demonstrated in the laboratory using a customised testbed. CANDi saves up to 50% energy during the node discovery process, while the demonstrative testbed shows up to 75% savings in the total energy budget, thus validating the algorithm, as well as providing viable evidence to support the usage of short-range cooperative communications for energy savings.
Resumo:
The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.
Resumo:
El avance en la potencia de cómputo en nuestros días viene dado por la paralelización del procesamiento, dadas las características que disponen las nuevas arquitecturas de hardware. Utilizar convenientemente este hardware impacta en la aceleración de los algoritmos en ejecución (programas). Sin embargo, convertir de forma adecuada el algoritmo en su forma paralela es complejo, y a su vez, esta forma, es específica para cada tipo de hardware paralelo. En la actualidad los procesadores de uso general más comunes son los multicore, procesadores paralelos, también denominados Symmetric Multi-Processors (SMP). Hoy en día es difícil hallar un procesador para computadoras de escritorio que no tengan algún tipo de paralelismo del caracterizado por los SMP, siendo la tendencia de desarrollo, que cada día nos encontremos con procesadores con mayor numero de cores disponibles. Por otro lado, los dispositivos de procesamiento de video (Graphics Processor Units - GPU), a su vez, han ido desarrollando su potencia de cómputo por medio de disponer de múltiples unidades de procesamiento dentro de su composición electrónica, a tal punto que en la actualidad no es difícil encontrar placas de GPU con capacidad de 200 a 400 hilos de procesamiento paralelo. Estos procesadores son muy veloces y específicos para la tarea que fueron desarrollados, principalmente el procesamiento de video. Sin embargo, como este tipo de procesadores tiene muchos puntos en común con el procesamiento científico, estos dispositivos han ido reorientándose con el nombre de General Processing Graphics Processor Unit (GPGPU). A diferencia de los procesadores SMP señalados anteriormente, las GPGPU no son de propósito general y tienen sus complicaciones para uso general debido al límite en la cantidad de memoria que cada placa puede disponer y al tipo de procesamiento paralelo que debe realizar para poder ser productiva su utilización. Los dispositivos de lógica programable, FPGA, son dispositivos capaces de realizar grandes cantidades de operaciones en paralelo, por lo que pueden ser usados para la implementación de algoritmos específicos, aprovechando el paralelismo que estas ofrecen. Su inconveniente viene derivado de la complejidad para la programación y el testing del algoritmo instanciado en el dispositivo. Ante esta diversidad de procesadores paralelos, el objetivo de nuestro trabajo está enfocado en analizar las características especificas que cada uno de estos tienen, y su impacto en la estructura de los algoritmos para que su utilización pueda obtener rendimientos de procesamiento acordes al número de recursos utilizados y combinarlos de forma tal que su complementación sea benéfica. Específicamente, partiendo desde las características del hardware, determinar las propiedades que el algoritmo paralelo debe tener para poder ser acelerado. Las características de los algoritmos paralelos determinará a su vez cuál de estos nuevos tipos de hardware son los mas adecuados para su instanciación. En particular serán tenidos en cuenta el nivel de dependencia de datos, la necesidad de realizar sincronizaciones durante el procesamiento paralelo, el tamaño de datos a procesar y la complejidad de la programación paralela en cada tipo de hardware. Today´s advances in high-performance computing are driven by parallel processing capabilities of available hardware architectures. These architectures enable the acceleration of algorithms when thes ealgorithms are properly parallelized and exploit the specific processing power of the underneath architecture. Most current processors are targeted for general pruposes and integrate several processor cores on a single chip, resulting in what is known as a Symmetric Multiprocessing (SMP) unit. Nowadays even desktop computers make use of multicore processors. Meanwhile, the industry trend is to increase the number of integrated rocessor cores as technology matures. On the other hand, Graphics Processor Units (GPU), originally designed to handle only video processing, have emerged as interesting alternatives to implement algorithm acceleration. Current available GPUs are able to implement from 200 to 400 threads for parallel processing. Scientific computing can be implemented in these hardware thanks to the programability of new GPUs that have been denoted as General Processing Graphics Processor Units (GPGPU).However, GPGPU offer little memory with respect to that available for general-prupose processors; thus, the implementation of algorithms need to be addressed carefully. Finally, Field Programmable Gate Arrays (FPGA) are programmable devices which can implement hardware logic with low latency, high parallelism and deep pipelines. Thes devices can be used to implement specific algorithms that need to run at very high speeds. However, their programmability is harder that software approaches and debugging is typically time-consuming. In this context where several alternatives for speeding up algorithms are available, our work aims at determining the main features of thes architectures and developing the required know-how to accelerate algorithm execution on them. We look at identifying those algorithms that may fit better on a given architecture as well as compleme
Resumo:
The multiscale finite volume (MsFV) method has been developed to efficiently solve large heterogeneous problems (elliptic or parabolic); it is usually employed for pressure equations and delivers conservative flux fields to be used in transport problems. The method essentially relies on the hypothesis that the (fine-scale) problem can be reasonably described by a set of local solutions coupled by a conservative global (coarse-scale) problem. In most cases, the boundary conditions assigned for the local problems are satisfactory and the approximate conservative fluxes provided by the method are accurate. In numerically challenging cases, however, a more accurate localization is required to obtain a good approximation of the fine-scale solution. In this paper we develop a procedure to iteratively improve the boundary conditions of the local problems. The algorithm relies on the data structure of the MsFV method and employs a Krylov-subspace projection method to obtain an unconditionally stable scheme and accelerate convergence. Two variants are considered: in the first, only the MsFV operator is used; in the second, the MsFV operator is combined in a two-step method with an operator derived from the problem solved to construct the conservative flux field. The resulting iterative MsFV algorithms allow arbitrary reduction of the solution error without compromising the construction of a conservative flux field, which is guaranteed at any iteration. Since it converges to the exact solution, the method can be regarded as a linear solver. In this context, the schemes proposed here can be viewed as preconditioned versions of the Generalized Minimal Residual method (GMRES), with a very peculiar characteristic that the residual on the coarse grid is zero at any iteration (thus conservative fluxes can be obtained).
Resumo:
In computer graphics, global illumination algorithms take into account not only the light that comes directly from the sources, but also the light interreflections. This kind of algorithms produce very realistic images, but at a high computational cost, especially when dealing with complex environments. Parallel computation has been successfully applied to such algorithms in order to make it possible to compute highly-realistic images in a reasonable time. We introduce here a speculation-based parallel solution for a global illumination algorithm in the context of radiosity, in which we have taken advantage of the hierarchical nature of such an algorithm
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
In vivo dosimetry is a way to verify the radiation dose delivered to the patient in measuring the dose generally during the first fraction of the treatment. It is the only dose delivery control based on a measurement performed during the treatment. In today's radiotherapy practice, the dose delivered to the patient is planned using 3D dose calculation algorithms and volumetric images representing the patient. Due to the high accuracy and precision necessary in radiation treatments, national and international organisations like ICRU and AAPM recommend the use of in vivo dosimetry. It is also mandatory in some countries like France. Various in vivo dosimetry methods have been developed during the past years. These methods are point-, line-, plane- or 3D dose controls. A 3D in vivo dosimetry provides the most information about the dose delivered to the patient, with respect to ID and 2D methods. However, to our knowledge, it is generally not routinely applied to patient treatments yet. The aim of this PhD thesis was to determine whether it is possible to reconstruct the 3D delivered dose using transmitted beam measurements in the context of narrow beams. An iterative dose reconstruction method has been described and implemented. The iterative algorithm includes a simple 3D dose calculation algorithm based on the convolution/superposition principle. The methodology was applied to narrow beams produced by a conventional 6 MV linac. The transmitted dose was measured using an array of ion chambers, as to simulate the linear nature of a tomotherapy detector. We showed that the iterative algorithm converges quickly and reconstructs the dose within a good agreement (at least 3% / 3 mm locally), which is inside the 5% recommended by the ICRU. Moreover it was demonstrated on phantom measurements that the proposed method allows us detecting some set-up errors and interfraction geometry modifications. We also have discussed the limitations of the 3D dose reconstruction for dose delivery error detection. Afterwards, stability tests of the tomotherapy MVCT built-in onboard detector was performed in order to evaluate if such a detector is suitable for 3D in-vivo dosimetry. The detector showed stability on short and long terms comparable to other imaging devices as the EPIDs, also used for in vivo dosimetry. Subsequently, a methodology for the dose reconstruction using the tomotherapy MVCT detector is proposed in the context of static irradiations. This manuscript is composed of two articles and a script providing further information related to this work. In the latter, the first chapter introduces the state-of-the-art of in vivo dosimetry and adaptive radiotherapy, and explains why we are interested in performing 3D dose reconstructions. In chapter 2 a dose calculation algorithm implemented for this work is reviewed with a detailed description of the physical parameters needed for calculating 3D absorbed dose distributions. The tomotherapy MVCT detector used for transit measurements and its characteristics are described in chapter 3. Chapter 4 contains a first article entitled '3D dose reconstruction for narrow beams using ion chamber array measurements', which describes the dose reconstruction method and presents tests of the methodology on phantoms irradiated with 6 MV narrow photon beams. Chapter 5 contains a second article 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations. A dose reconstruction process specific to the use of the tomotherapy MVCT detector is presented in chapter 6. A discussion and perspectives of the PhD thesis are presented in chapter 7, followed by a conclusion in chapter 8. The tomotherapy treatment device is described in appendix 1 and an overview of 3D conformai- and intensity modulated radiotherapy is presented in appendix 2. - La dosimétrie in vivo est une technique utilisée pour vérifier la dose délivrée au patient en faisant une mesure, généralement pendant la première séance du traitement. Il s'agit de la seule technique de contrôle de la dose délivrée basée sur une mesure réalisée durant l'irradiation du patient. La dose au patient est calculée au moyen d'algorithmes 3D utilisant des images volumétriques du patient. En raison de la haute précision nécessaire lors des traitements de radiothérapie, des organismes nationaux et internationaux tels que l'ICRU et l'AAPM recommandent l'utilisation de la dosimétrie in vivo, qui est devenue obligatoire dans certains pays dont la France. Diverses méthodes de dosimétrie in vivo existent. Elles peuvent être classées en dosimétrie ponctuelle, planaire ou tridimensionnelle. La dosimétrie 3D est celle qui fournit le plus d'information sur la dose délivrée. Cependant, à notre connaissance, elle n'est généralement pas appliquée dans la routine clinique. Le but de cette recherche était de déterminer s'il est possible de reconstruire la dose 3D délivrée en se basant sur des mesures de la dose transmise, dans le contexte des faisceaux étroits. Une méthode itérative de reconstruction de la dose a été décrite et implémentée. L'algorithme itératif contient un algorithme simple basé sur le principe de convolution/superposition pour le calcul de la dose. La dose transmise a été mesurée à l'aide d'une série de chambres à ionisations alignées afin de simuler la nature linéaire du détecteur de la tomothérapie. Nous avons montré que l'algorithme itératif converge rapidement et qu'il permet de reconstruire la dose délivrée avec une bonne précision (au moins 3 % localement / 3 mm). De plus, nous avons démontré que cette méthode permet de détecter certaines erreurs de positionnement du patient, ainsi que des modifications géométriques qui peuvent subvenir entre les séances de traitement. Nous avons discuté les limites de cette méthode pour la détection de certaines erreurs d'irradiation. Par la suite, des tests de stabilité du détecteur MVCT intégré à la tomothérapie ont été effectués, dans le but de déterminer si ce dernier peut être utilisé pour la dosimétrie in vivo. Ce détecteur a démontré une stabilité à court et à long terme comparable à d'autres détecteurs tels que les EPIDs également utilisés pour l'imagerie et la dosimétrie in vivo. Pour finir, une adaptation de la méthode de reconstruction de la dose a été proposée afin de pouvoir l'implémenter sur une installation de tomothérapie. Ce manuscrit est composé de deux articles et d'un script contenant des informations supplémentaires sur ce travail. Dans ce dernier, le premier chapitre introduit l'état de l'art de la dosimétrie in vivo et de la radiothérapie adaptative, et explique pourquoi nous nous intéressons à la reconstruction 3D de la dose délivrée. Dans le chapitre 2, l'algorithme 3D de calcul de dose implémenté pour ce travail est décrit, ainsi que les paramètres physiques principaux nécessaires pour le calcul de dose. Les caractéristiques du détecteur MVCT de la tomothérapie utilisé pour les mesures de transit sont décrites dans le chapitre 3. Le chapitre 4 contient un premier article intitulé '3D dose reconstruction for narrow beams using ion chamber array measurements', qui décrit la méthode de reconstruction et présente des tests de la méthodologie sur des fantômes irradiés avec des faisceaux étroits. Le chapitre 5 contient un second article intitulé 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations'. Un procédé de reconstruction de la dose spécifique pour l'utilisation du détecteur MVCT de la tomothérapie est présenté au chapitre 6. Une discussion et les perspectives de la thèse de doctorat sont présentées au chapitre 7, suivies par une conclusion au chapitre 8. Le concept de la tomothérapie est exposé dans l'annexe 1. Pour finir, la radiothérapie «informationnelle 3D et la radiothérapie par modulation d'intensité sont présentées dans l'annexe 2.
Resumo:
Background: Research in epistasis or gene-gene interaction detection for human complex traits has grown over the last few years. It has been marked by promising methodological developments, improved translation efforts of statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems. In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to be investigated. This algorithm was implemented in C++ in our epistasis screening software MBMDR-3.0.3. We evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is illustrated on real-life data for Crohn’s disease. Results: In the case of a binary (affected/unaffected) trait, the parallel workflow of MBMDR-3.0.3 analyzes all gene-gene interactions with a dataset of 100,000 SNPs typed on 1000 individuals within 4 days and 9 hours, using 999 permutations of the trait to assess statistical significance, on a cluster composed of 10 blades, containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. In the case of a continuous trait, a similar run takes 9 days. Our program found 14 SNP-SNP interactions with a multiple-testing corrected p-value of less than 0.05 on real-life Crohn’s disease (CD) data. Conclusions: Our software is the first implementation of the MB-MDR methodology able to solve large-scale SNP-SNP interactions problems within a few days, without using much memory, while adequately controlling the type I error rates. A new implementation to reach genome-wide epistasis screening is under construction. In the context of Crohn’s disease, MBMDR-3.0.3 could identify epistasis involving regions that are well known in the field and could be explained from a biological point of view. This demonstrates the power of our software to find relevant phenotype-genotype higher-order associations.
Resumo:
Context: Ovarian tumors (OT) typing is a competency expected from pathologists, with significant clinical implications. OT however come in numerous different types, some rather rare, with the consequence of few opportunities for practice in some departments. Aim: Our aim was to design a tool for pathologists to train in less common OT typing. Method and Results: Representative slides of 20 less common OT were scanned (Nano Zoomer Digital Hamamatsu®) and the diagnostic algorithm proposed by Young and Scully applied to each case (Young RH and Scully RE, Seminars in Diagnostic Pathology 2001, 18: 161-235) to include: recognition of morphological pattern(s); shortlisting of differential diagnosis; proposition of relevant immunohistochemical markers. The next steps of this project will be: evaluation of the tool in several post-graduate training centers in Europe and Québec; improvement of its design based on evaluation results; diffusion to a larger public. Discussion: In clinical medicine, solving many cases is recognized as of utmost importance for a novice to become an expert. This project relies on the virtual slides technology to provide pathologists with a learning tool aimed at increasing their skills in OT typing. After due evaluation, this model might be extended to other uncommon tumors.
Resumo:
This thesis introduces an extension of Chomsky’s context-free grammars equipped with operators for referring to left and right contexts of strings.The new model is called grammar with contexts. The semantics of these grammars are given in two equivalent ways — by language equations and by logical deduction, where a grammar is understood as a logic for the recursive definition of syntax. The motivation for grammars with contexts comes from an extensive example that completely defines the syntax and static semantics of a simple typed programming language. Grammars with contexts maintain most important practical properties of context-free grammars, including a variant of the Chomsky normal form. For grammars with one-sided contexts (that is, either left or right), there is a cubic-time tabular parsing algorithm, applicable to an arbitrary grammar. The time complexity of this algorithm can be improved to quadratic,provided that the grammar is unambiguous, that is, it only allows one parsefor every string it defines. A tabular parsing algorithm for grammars withtwo-sided contexts has fourth power time complexity. For these grammarsthere is a recognition algorithm that uses a linear amount of space. For certain subclasses of grammars with contexts there are low-degree polynomial parsing algorithms. One of them is an extension of the classical recursive descent for context-free grammars; the version for grammars with contexts still works in linear time like its prototype. Another algorithm, with time complexity varying from linear to cubic depending on the particular grammar, adapts deterministic LR parsing to the new model. If all context operators in a grammar define regular languages, then such a grammar can be transformed to an equivalent grammar without context operators at all. This allows one to represent the syntax of languages in a more succinct way by utilizing context specifications. Linear grammars with contexts turned out to be non-trivial already over a one-letter alphabet. This fact leads to some undecidability results for this family of grammars
Resumo:
This research attempted to address the question of the role of explicit algorithms and episodic contexts in the acquisition of computational procedures for regrouping in subtraction. Three groups of students having difficulty learning to subtract with regrouping were taught procedures for doing so through either an explicit algorithm, an episodic content or an examples approach. It was hypothesized that the use of an explicit algorithm represented in a flow chart format would facilitate the acquisition and retention of specific procedural steps relative to the other two conditions. On the other hand, the use of paragraph stories to create episodic content was expected to facilitate the retrieval of algorithms, particularly in a mixed presentation format. The subjects were tested on similar, near, and far transfer questions over a four-day period. Near and far transfer algorithms were also introduced on Day Two. The results suggested that both explicit and episodic context facilitate performance on questions requiring subtraction with regrouping. However, the differential effects of these two approaches on near and far transfer questions were not as easy to identify. Explicit algorithms may facilitate the acquisition of specific procedural steps while at the same time inhibiting the application of such steps to transfer questions. Similarly, the value of episodic context in cuing the retrieval of an algorithm may be limited by the ability of a subject to identify and classify a new question as an exemplar of a particular episodically deflned problem type or category. The implications of these findings in relation to the procedures employed in the teaching of Mathematics to students with learning problems are discussed in detail.
Resumo:
In computer graphics, global illumination algorithms take into account not only the light that comes directly from the sources, but also the light interreflections. This kind of algorithms produce very realistic images, but at a high computational cost, especially when dealing with complex environments. Parallel computation has been successfully applied to such algorithms in order to make it possible to compute highly-realistic images in a reasonable time. We introduce here a speculation-based parallel solution for a global illumination algorithm in the context of radiosity, in which we have taken advantage of the hierarchical nature of such an algorithm
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
This paper discusses the auditory brainstem response (ABR) testing for infants.