955 resultados para algebraic bethe-ansatz
Resumo:
Charge density and magnetization density profiles of one-dimensional metals are investigated by two complementary many-body methods: numerically exact (Lanczos) diagonalization, and the Bethe-Ansatz local-density approximation with and without a simple self-interaction correction. Depending on the magnetization of the system, local approximations reproduce different Fourier components of the exact Friedel oscillations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Neste trabalho definimos três modelos de escadas de spin integráveis novos que correspondem a variações de um modelo de escada de spin baseado na simetria SU(4). Os modelos são exatamente solúveis através do método do ansatz de Bethe e as equações do ansatz de Bethe, os autovalores de energia e o gap de spin são derivados e propriedades físicas interessantes são discutidas. Inicialmente apresentamos um modelo de escada de spin integrável que possui um parâmetro livre além do acomplamento ao longo dos degraus. Determinamos a dependência do parâmetro anisotrópico na transição de fase entre uma região com gap e outra sem gap. Nós também mostramos que o modelo é um caso especial de uma Hamiltoniana mais geral que possui três parâmetros livres. A susceptibilidade magnética em função da temperatura é obtida numericamente e sua dependência no parâmetro anisotrópico é determinada explicitamente. Uma comparação entre o gap de spin obtido através da curva de susceptibilidade magnética e aquele obtido das equações do ansatz de Bethe é feita e uma boa concordância encontrada. A conexão com alguns compostos é apresentada e mostramos que os nossos resultados ajustam bem a curva da susceptibilidade magnética dos compostos KCuCI3, CU2(C5H12N2hC14e (C5H12NhCuBr4. A seguir nós propomos dois tipos diferentes de modelos integráveis com impurezas. Mostramos em ambos os casos que uma transição de fase entre uma região com gap e outra sem gap ocorre para um valor crítico do acoplamento ao longo dos degraus. Além disso, a dependência das impurezas na transição de fase é determinada explicitamente. Em um dos modelos o gap diminui com o aumento da intensidade da impureza A. E, fixando a intensidade de impureza A, é observada uma redução do gap com o aumento da concentração de impurezas. Este resultado está qualitativamente de acordo com resultados experimentais.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the thermodynamics of an integrable spin ladder model which possesses a free parameter besides rung and leg couplings. The model is exactly solvable by means of the Bethe ansatz and exhibits a phase transition between a gapped and a gapless spin excitation spectrum. The magnetic susceptibility is obtained numerically and its dependence on the anisotropy parameter is determined. The spin gap obtained from the susceptibility curve and the one obtained from the Bethe ansatz equations are in very good agreement. Our results for the magnetic susceptibility fit well the experimental data for the organometallic compounds (5IAP)(2)CuBr4 . 2H(2)O (Landee C. P. et al., Phys. Rev. B, 63 (2001) 100402(R)) Cu-2(C5H12N2)(2)Cl-4 (Hayward C. A., Poilblanc D. and Levy L. P., Phys. Rev. B, 54 (1996) R12649, Chaboussant G. et al., Phys. Rev. Lett., 19 ( 1997) 925; Phys. Rev. B, 55 ( 1997) 3046.) and (C5H12N)(2)CuBr4 (Watson B. C. et al., Phys. Rev. Lett., 86 ( 2001) 5168) in the strong-coupling regime.
Resumo:
We present an integrable spin-ladder model, which possesses a free parameter besides the rung coupling J. Wang's system based on the SU(4) symmetry can be obtained as a special case. The model is exactly solvable by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that the model is a special case of a more general Hamiltonian with three free parameters.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We investigate the classical integrability of the Alday-Arutyunov-Frolov model, and show that the Lax connection can be reduced to a simpler 2 x 2 representation. Based on this result, we calculate the algebra between the L-operators and find that it has a highly non-ultralocal form. We then employ and make a suitable generalization of the regularization technique proposed by Mail let for a simpler class of non-ultralocal models, and find the corresponding r- and s-matrices. We also make a connection between the operator-regularization method proposed earlier for the quantum case, and the Mail let's symmetric limit regularization prescription used for non-ultralocal algebras in the classical theory.
Resumo:
The Thermodynamic Bethe Ansatz analysis is carried out for the extended-CP^N class of integrable 2-dimensional Non-Linear Sigma Models related to the low energy limit of the AdS_4xCP^3 type IIA superstring theory. The principal aim of this program is to obtain further non-perturbative consistency check to the S-matrix proposed to describe the scattering processes between the fundamental excitations of the theory by analyzing the structure of the Renormalization Group flow. As a noteworthy byproduct we eventually obtain a novel class of TBA models which fits in the known classification but with several important differences. The TBA framework allows the evaluation of some exact quantities related to the conformal UV limit of the model: effective central charge, conformal dimension of the perturbing operator and field content of the underlying CFT. The knowledge of this physical quantities has led to the possibility of conjecturing a perturbed CFT realization of the integrable models in terms of coset Kac-Moody CFT. The set of numerical tools and programs developed ad hoc to solve the problem at hand is also discussed in some detail with references to the code.
Resumo:
Within the framework of the AdS5/CFT4 correspondence, the GKP string living on a AdS5 x S5 background finds a counterpart in the anti-ferromagnetic vacuum state for the spin chain, fruitfully employed to investigate the dual N=4 SYM superconformal gauge theory. The thesis mainly deals with the excitations over such a vacuum: dispersion relations and scattering matrices are computed, moreover a set of Asymptotic Bethe Ansatz equations is formulated. Furthermore, the survey of the GKP vacuum within the AdS4/CFT3 duality between a string theory on AdS4 x CP 3 and N=6 Chern-Simons reveals intriguing connections relating the latter to N=4 SYM, in a peculiar high spin limit.
Resumo:
Lo scopo di questa tesi è studiare l'espansione dinamica di due fermioni interagenti in una catena unidimensionale cercando di definire il ruolo degli stati legati durante l'evoluzione temporale del sistema. Lo studio di questo modello viene effettuato a livello analitico tramite la tecnica del Bethe ansatz, che ci fornisce autovalori ed autovettori dell'hamiltoniana, e se ne valutano le proprietà statiche. Particolare attenzione è stata dedicata alle caratteristiche dello spettro al variare dell'interazione tra le due particelle e alle caratteristiche degli autostati. Dalla risoluzione dell'equazione di Bethe vengono ricercate le soluzioni che danno luogo a stati legati delle due particelle e se ne valuta lo spettro energetico in funzione del momento del centro di massa. Si è studiato inoltre l'andamento del numero delle soluzioni, in particolare delle soluzioni che danno luogo ad uno stato legato, al variare della lunghezza della catena e del parametro di interazione. La valutazione delle proprietà dinamiche del modello è stata effettuata tramite l'utilizzo dell'algoritmo t-DMRG (time dependent - Density Matrix Renormalization Group). Questo metodo numerico, che si basa sulla decimazione dello spazio di Hilbert, ci permette di avere accesso a quantità che caratterizzano la dinamica quali la densità e la velocità di espansione. Da queste sono stati estratti i proli dinamici della densità e della velocità di espansione al variare del valore del parametro di interazione.
Resumo:
The 1-D 1/2-spin XXZ model with staggered external magnetic field, when restricting to low field, can be mapped into the quantum sine-Gordon model through bosonization: this assures the presence of soliton, antisoliton and breather excitations in it. In particular, the action of the staggered field opens a gap so that these physical objects are stable against energetic fluctuations. In the present work, this model is studied both analytically and numerically. On the one hand, analytical calculations are made to solve exactly the model through Bethe ansatz: the solution for the XX + h staggered model is found first by means of Jordan-Wigner transformation and then through Bethe ansatz; after this stage, efforts are made to extend the latter approach to the XXZ + h staggered model (without finding its exact solution). On the other hand, the energies of the elementary soliton excitations are pinpointed through static DMRG (Density Matrix Renormalization Group) for different values of the parameters in the hamiltonian. Breathers are found to be in the antiferromagnetic region only, while solitons and antisolitons are present both in the ferromagnetic and antiferromagnetic region. Their single-site z-magnetization expectation values are also computed to see how they appear in real space, and time-dependent DMRG is employed to realize quenches on the hamiltonian parameters to monitor their time-evolution. The results obtained reveal the quantum nature of these objects and provide some information about their features. Further studies and a better understanding of their properties could bring to the realization of a two-level state through a soliton-antisoliton pair, in order to implement a qubit.
Resumo:
In questo lavoro di tesi è stato svolto uno studio analitico sul modello di Hubbard esteso unidimensionale al fine di osservare la presenza di eventuali risonanze che possano dare origine alla formazione di stati legati di due particelle. L'esistenza di uno stato legato stabile ha suscitato grande interesse negli ultimi anni, sia in ambito teorico che sperimentale, poichè è alla base di molti fenomeni che vengono osservati nei sistemi a molti corpi a basse temperature, come il BCS-BEC crossover. Pertanto si è ritenuto utile studiare il problema a due corpi nel modello di Hubbard esteso, che in generale non è integrabile. Il modello considerato contiene interazioni a primi e secondi vicini, in aggiunta all'interazione di contatto presente nel modello di Hubbard. Il problema è stato indagato analiticamente attraverso il Bethe ansatz, che consente di trovare tutti gli autovalori e le autofunzioni dell'Hamiltoniana. L'ansatz di Bethe sulla funzione d'onda è stato generalizzato per poter tener conto dei termini di interazione a più lungo raggio rispetto all'interazione di contatto. Si trova che, in questo modello, nel limite termodinamico, possono avvenire delle risonanze (o quasi-risonanze) in cui la lunghezza di scattering diverge, contrariamente a quanto avviene nel modello di Hubbard. Tale fenomeno si verifica quando il livello energetico discreto degli stati legati “tocca” la banda di scattering. Inoltre, con l'aggiunta di nuovi termini di interazione emergono nuovi stati legati. Nel caso in esame, si osservano due famiglie di stati legati, se lo spin totale delle due particelle è 1, e tre famiglie di stati legati, se lo spin totale è 0.
Resumo:
We show that an Anderson Hamiltonian describing a quantum dot connected to multiple leads is integrable. A general expression for the nonlinear conductance is obtained by combining the Bethe ansatz exact solution with Landauer-Buttiker theory. In the Kondo regime, a closed form expression is given for the matrix conductance at zero temperature and when all the leads are close to the symmetric point. A bias-induced splitting of the Kondo resonance is possible for three or more leads. Specifically, for N leads, with each at a different chemical potential, there can be N-1 Kondo peaks in the conductance.
Resumo:
We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.