899 resultados para air-lift pump


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The symposium reported here was the thirteenth of a series devoted to talks by students on their biochemical engineering research. The first, third, fifth, ninth, and twelfth were at Kansas State University, the second and fourth were at the University of Nebraska–Lincoln, the sixth was in Kansas City and was hosted by Iowa State University, the seventh and tenth were at Iowa State, and the eighth and eleventh were at the University of Missouri–Columbia and Colorado State University, respectively. All symposia have been followed by proceedings edited by faculty of the host institution. Because final publication usually takes place elsewhere, papers here are brief, and often cover research in progress. ContentSequential Utilization of Mixed Sugars by Clostridium acetobutylicum, B. Hong, N. H. Choi, and L. T. Fan, Kansas State University The Effects of Dilution Rate on the Kinetics. of Anaerobic Acidogenesis, C. J. Huang, Colorado State University Ethanol Production by Zymomonas mobilis in Anaerobic Glucose-Limited Culture: A Yield Study, Mehmet D. Oner, Kansas State University Hydrolysis of Cellulosics by Enterobacteria, Michael R. Sierks, Iowa State University The Cellulase System of Chaetomium cellulolyticum, Nikhil Mehta, Colorado State University DNA Measurement as a Tool for Estimating Biomass Concentration in the Presence of Interfering Solids, Bamidele 0. Solomon, Kansas State University The Effect of Cellulose Crystallinity on Enzymatic Hydrolysis, Maria S. Bertran, Colorado State University High Performance Liquid Chromatography of Di- and Trisaccharides, Michael M. Meagher, Iowa State University Dynamics of Bubble Size .Distributions in Air-Lift Fermentors, c. H. Lee and Snehal A. Patel, Kansas State University A Thermal Coagulation Study of Alfalfa Leaf Proteins by Differential Scanning Calorimeter, Khalif Ahmed and Bruce Dale, Colorado State University Thermodynamic Efficiency of Photoautotrophic Growth, Hyeon Y. Lee, Kansas State University

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Annual Biochemical Engineering Symposium series is devoted to presentations by students on their research topics. The fourteenth event, held in 1984, was organized at the University of Missouri–Columbia. It was attended by the biochemical engineering faculty and the students from Colorado State University, Iowa State University, Kansas State University, University of Missouri–Columbia, University of Missouri–Rolla and Washington University, St. Louis. Contents"Estimation of Product Formation Kinetics and Microbial Yield Parameters for Anaerobic Organic Acid and Solvent Production," M.D. Oner, Kansas State University "Characterization of Soy Protein Texturization in a Complex Bioreactor," J.L. Ibave, Colorado State University "Acid and Solvent Fermentations Using Mixed Cultures," D. Stevens, University of Missouri–Columbia "Preliminary Process Design for Ethanol from Sweet Sorghum Ensilage Feedstock," Keith D. Lange, Colorado State University "Lamella Settlers in Ethanol Fermentation," Yong Jayanata, University of Missouri–Columbia "Bubble Size Distribution in the Down Flow Section of an Air-Lift Column," Snehal A. Patel and C.H. Lee, Kansas State University "The Sensitivity of Plant Cells to Shear Stress," Morris Z. Resenberg and Eric H. Dunlap, Washington University, St. Louis "Estimation of Growth Yield Parameters Associated with Microbial Growth," Hyeon Y. Lee, Kansas State University "Capillary Gas Chromatography of Trimethylsilylated Trisaccharides," Etienne J.M. Selosse, Iowa State University "Subsite Mapping of an Endo-Xylanase Labeled Xylooligo-saccharides," Bernard Y. Tao, Iowa State University "Cellulase Enzyme Recycle," Kate M.V. Baptie, Colorado State University "Non-Homogeneous Poisson Renewal Reward Process for Modelling Enzymatic Hydrolysis of Cellulose," M.M. Gharpuray and L.T. Fan, Kansas State University

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eighteenth annual biochemical engineering symposium was held during April 22–23, 1988 at the YMCA of the Rockies conference center in Estes Park, Colorado, under the sponsorship of the University of Colorado. Previous symposia in this series have been hosted by Kansas State University (1st, 3rd, 5th, 9th, 12th, 16th), University of Nebraska-Lincoln (2nd, 4th), Iowa State University (6th, 7th, l0th, 13th, 17th), University of Missouri–Columbia (8th, 14th), and Colorado State University (11th, 15th). Next year's symposium is scheduled to be held at the University of Missouri-Columbia. The symposia are devoted to talks by students about their ongoing research. Because final publication usually takes place elsewhere, the papers included in the proceedings are brief, and often cover work in progress. ContentsApplications of mass spectrometers in biochemical engineeringJohn P. McDonald, Ayush Gupta, and Lourdes Taladriz, Kansas State University Enzymatic hydrolysis of corn gluten proteinsJulie Hardwick; Iowa State University Improved Acetone-Butanol Fermentation AnalysisZ. Buday; Colorado State University On-Line State Identification for Batch FermentationD. A. Gee and W. F. Ramirez; University of Colorado Role of Spargers in Air-Lift ReactorsPeter U. Sohn and Rakesh K. Bajpai; University of Missouri–Columbia The Interaction of Microcarriers and Turbulence within an Airlift FermenterG. Travis Jones; Kansas State University Oxygen Diffusion in the Inter-Fiber Gel/Cell Matrix of NMR-Compatible Hollow Fiber Bio-ReactorsS. L. Hanson, B. E. Dale, and R. J. Gillies; Colorado State University Characterization of Ca-alginate Gel Beads FormationHorngtwu Su, Rakesh K. Bajpai, and George W. Preckshot; University of Missouri–Columbia Metabolic Effects of Chloramphenicol Resistance in the Recombinant Host/Vector System: E. coli RRl [pBR329]William E. Bentley, Dana C. Andersen, Dhinakar S. Kompala, and Robert H. Davis; University of Colorado Genetic Engineering of Beta-Galactosidase to Aid in Fermentation Product Recovery by Polyelectrolyte PrecipitationD. E. Parker, C. E. Glatz, J. Zhao, C. F. Ford, S. M. Gendel, and M. A. Rougvie; Iowa State University Biodegradation of Organic Compounds in SoilLourdes Taladriz, L. E. Erickson, and L. T. Fan; Kansas State University Effect of Dilution, pH and Nutrient Composition on the Biodegradation of Metalworking FluidsAyush Gupta, L. E. Erickson, and L. T. Fan; Kansas State University Dissolved Hydrogen Correlation with Redox Potential in Acetone-Butanol FermentationXiangdong Zhou; Colorado State University Modeling of Ensiling Fermentation of Sweet SorghumA. K. Hilaly; Colorado State University

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is the seventeenth of a series of symposia devoted to talks by students about their biochemical engineering research. The first, third, fifth, ninth, twelfth, and sixteenth were at Kansas State University, the second and fourth were at the University of Nebraska-Lincoln, the sixth was in Kansas City and was hosted by Iowa State University, the seventh, tenth, thirteenth, and seventeenth were at Iowa State University, the eighth and fourteenth were at the University of Missouri–Columbia, and the eleventh and fifteenth were at Colorado State University. Next year's symposium will be at the University of Colorado. Symposium proceedings are edited by faculty of the host institution. Because final publication usually takes place elsewhere, papers here are brief, and often cover work in progress. ContentsThe Effect of Polymer Dosage Conditions on the Properties of ProteinPolyelectrolyte Precipitates, K. H. Clark and C. E. Glatz, Iowa State University An Immobilized Enzyme Reactor/Separator for the Hydrolysis of Casein by Subtilisin Carlsberg, A. J. Bream, R. A. Yoshisato, and G. R. Carmichael, University of Iowa Cell Density Measurements in Hollow Fiber Bioreactors, Thomas Blute, Colorado State University The Hydrodynamics in an Air-Lift Reactor, Peter Sohn, George Y. Preckshot, and Rakesh K. Bajpai, University of Missouri–Columbia Local Liquid Velocity Measurements in a Split Cylinder Airlift Column, G. Travis Jones, Kansas State University Fluidized Bed Solid Substrate Trichoderma reesei Fermentation, S. Adisasmito, H. N. Karim, and R. P. Tengerdy, Colorado State University The Effect of 2,4-D Concentration on the Growth of Streptanthus tortuosis Cells in Shake Flask and Air-Lift Permenter Culture, I. C. Kong, R. D. Sjolund, and R. A. Yoshisato, University of Iowa Protein Engineering of Aspergillus niger Glucoamylase, Michael R. Sierks, Iowa State University Structured Kinetic Modeling of Hybidoma Growth and Monoclonal Antibody Production in Suspension Cultures, Brian C. Batt and Dhinakar S. Kampala, University of Colorado Modelling and Control of a Zymomonas mobilis Fermentation, John F. Kramer, M. N. Karim, and J. Linden, Colorado State University Modeling of Brettanomyces clausenii Fermentation on Mixtures of Glucose and Cellobiose, Max T. Bynum and Dhinakar S. Kampala, University of Colorado, Karel Grohmann and Charles E. Yyman, Solar Energy Research Institute Master Equation Modeling and Monte Carlo Simulation of Predator-Prey Interactions, R. 0. Fox, Y. Y. Huang, and L. T. Fan, Kansas State University Kinetics and Equilibria of Condensation Reactions Between Two Different Monosaccharides Catalyzed by Aspergillus niger Glucoamylase, Sabine Pestlin, Iowa State University Biodegradation of Metalworking Fluids, S. M. Lee, Ayush Gupta, L. E. Erickson, and L. T. Fan, Kansas State University Redox Potential, Toxicity and Oscillations in Solvent Fermentations, Kim Joong, Rakesh Bajpai, and Eugene L. Iannotti, University of Missouri–Columbia Using Structured Kinetic Models for Analyzing Instability in Recombinant Bacterial Cultures, William E. Bentley and Dhinakar S. Kompala, University of Colorado

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work investigated the purification of phosphoric acid using a suitable organic solvent, followed by re-extraction of the acid from the solvent using water. The work consisted of practical batch and continuous studies and the economics and design of a full scale plant, based on the experimental data. A comprehensive literature survey on the purification of wet process phosphoric acid by organic solvents is presented and the literature describing the design and operation of mixer-settlers has also been reviewed. In batch studies, the equilibrium and distribution curves for the systems water-phosphoric acid-solvent for Benzaldehyde, Cyclohexanol and Methylisobutylketone (MIBK) were determined together with hydrodynamic characteristics for both pure and impure systems. The settling time increased with acid concentration, but power input had no effect. Drop size was found to reduce with acid concentration and power input. For the continuous studies a novel horizontal mixer~settler cascade was designed, constructed and operated using pure and impure acid with MIBK as the solvent. The cascade incorporates three air turbine agitated, cylindrical 900 ml mixers, and three cylindrical 200 ml settlers with air-lift solvent interstage transfer. Mean drop size in the fully baffled mixer was correlated. Drop size distributions were log-normal and size decreased with acid concentration and power input and increased with dispersed phase hold-up. Phase inversion studies showed that the width of the ambivalent region depended upon rotor speed, hold-up and acid concentration. Settler characteristics were investigated by measuring wedge length. Distribution coefficients of impurities and acid were also investigated. The following optimum extraction conditions were found: initial acid concentration 63%, phase ratio of solvent to acid 1:1 (v/v), impeller speed recommended 900 r.p.m. In the washing step the maximum phase ratio of solvent to water was 8:1 (v/v). Work on phosphoric acid concentration involved constructing distillation equipment consisting of a 10& spherical still. A 100 T/d scale detailed process design including capital cost, operating cost and profitability was also completed. A profit model for phosphoric acid extraction was developed and maximised. Recommendations are made for both the application of the results to a practical design and for extensions of the study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accounting for around 40% of the total final energy consumption, the building stock is an important area of focus on the way to reaching the energy goals set for the European Union. The relatively small share of new buildings makes renovation of existing buildings possibly the most feasible way of improving the overall energy performance of the building stock. This of course involves improvements on the climate shell, for example by additional insulation or change of window glazing, but also installation of new heating systems, to increase the energy efficiency and to fit the new heat load after renovation. In the choice of systems for heating, ventilation and air conditioning (HVAC), it is important to consider their performance for space heating as well as for domestic hot water (DHW), especially for a renovated house where the DHW share of the total heating consumption is larger. The present study treats the retrofitting of a generic single family house, which was defined as a reference building in a European energy renovation project. Three HVAC retrofitting options were compared from a techno-economic point of view: A) Air-to-water heat pump (AWHP) and mechanical ventilation with heat recovery (MVHR), B) Exhaust air heat pump (EAHP) with low-temperature ventilation radiators, and C) Gas boiler and ventilation with MVHR. The systems were simulated for houses with two levels of heating demand and four different locations: Stockholm, Gdansk, Stuttgart and London. They were then evaluated by means of life cycle cost (LCC) and primary energy consumption. Dynamic simulations were done in TRNSYS 17. In most cases, system C with gas boiler and MVHR was found to be the cheapest retrofitting option from a life cycle perspective. The advantage over the heat pump systems was particularly clear for a house in Germany, due to the large discrepancy between national prices of natural gas and electricity. In Sweden, where the price difference is much smaller, the heat pump systems had almost as low or even lower life cycle costs than the gas boiler system. Considering the limited availability of natural gas in Sweden, systems A and B would be the better options. From a primary energy point of view system A was the best option throughout, while system B often had the highest primary energy consumption. The limited capacity of the EAHP forced it to use more auxiliary heating than the other systems did, which lowered its COP. The AWHP managed the DHW load better due to a higher capacity, but had a lower COP than the EAHP in space heating mode. Systems A and C were notably favoured by the air heat recovery, which significantly reduced the heating demand. It was also seen that the DHW share of the total heating consumption was, as expected, larger for the house with the lower space heating demand. This confirms the supposition that it is important to include DHW in the study of HVAC systems for retrofitting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This document proposes to describe a pilot plant for oil wells equipped with plunger lift. In addition to a small size (21,5 meters) and be on the surface, the plant s well has part of its structure in transparent acrylic, allowing easy visualization of phenomena inherent to the method. The rock formation where the well draws its pilot plant fluids (water and air) is simulated by a machine room where they are located the compressor and water pump for the production of air and water. To keep the flow of air and water with known and controlled values the lines that connect the machine room to the wellhole are equipped with flow sensors and valves. It s developed a supervisory system that allows the user a real-time monitoring of pressures and flow rates involved. From the supervisor is still allowed the user can choose how they will be controlled cycles of the process, whether by time, pressure or manually, and set the values of air flow to the water used in cycles. These values can be defined from a set point or from the percentage of valve opening. Results from tests performed on the plant using the most common forms of control by time and pressure in the coating are showed. Finally, they are confronted with results generated by a simulator configured with the the pilot plant s feature

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study on heat pump thermodynamic characteristics has been made in the laboratory on a specially designed and instrumented air to water heat pump system. The design, using refrigerant R12, was based on the requirement to produce domestic hot water at a temperature of about 50 °C and was assembled in the laboratory. All the experimental data were fed to a microcomputer and stored on disk automatically from appropriate transducers via amplifier and 16 channel analogue to digital converters. The measurements taken were R12 pressures and temperatures, water and R12 mass flow rates, air speed, fan and compressor input powers, water and air inlet and outlet temperatures, wet and dry bulb temperatures. The time interval between the observations could be varied. The results showed, as expected, that the COP was higher at higher air inlet temperatures and at lower hot water output temperatures. The optimum air speed was found to be at a speed when the fan input power was about 4% of the condenser heat output. It was also found that the hot water can be produced at a temperature higher than the appropriate R12 condensing temperature corresponding to condensing pressure. This was achieved by condenser design to take advantage of discharge superheat and by further heating the water using heat recovery from the compressor. Of the input power to the compressor, typically about 85% was transferred to the refrigerant, 50 % by the compression work and 35% due to the heating of the refrigerant by the cylinder wall, and the remaining 15% (of the input power) was rejected to the cooling medium. The evaporator effectiveness was found to be about 75% and sensitive to the air speed. Using the data collected, a steady state computer model was developed. For given input conditions s air inlet temperature, air speed, the degree of suction superheat , water inlet and outlet temperatures; the model is capable of predicting the refrigerant cycle, compressor efficiency, evaporator effectiveness, condenser water flow rate and system Cop.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this Thesis a series of numerical models for the evaluation of the seasonal performance of reversible air-to-water heat pump systems coupled to residential and non-residential buildings are presented. The exploitation of the energy saving potential linked to the adoption of heat pumps is a hard task for designers due to the influence on their energy performance of several factors, like the external climate variability, the heat pump modulation capacity, the system control strategy and the hydronic loop configuration. The aim of this work is to study in detail all these aspects. In the first part of this Thesis a series of models which use a temperature class approach for the prediction of the seasonal performance of reversible air source heat pumps are shown. An innovative methodology for the calculation of the seasonal performance of an air-to-water heat pump has been proposed as an extension of the procedure reported by the European standard EN 14825. This methodology can be applied not only to air-to-water single-stage heat pumps (On-off HPs) but also to multi-stage (MSHPs) and inverter-driven units (IDHPs). In the second part, dynamic simulation has been used with the aim to optimize the control systems of the heat pump and of the HVAC plant. A series of dynamic models, developed by means of TRNSYS, are presented to study the behavior of On-off HPs, MSHPs and IDHPs. The main goal of these dynamic simulations is to show the influence of the heat pump control strategies and of the lay-out of the hydronic loop used to couple the heat pump to the emitters on the seasonal performance of the system. A particular focus is given to the modeling of the energy losses linked to on-off cycling.