949 resultados para air conditioning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – To evaluate the control strategy for a hybrid natural ventilation wind catchers and air-conditioning system and to assess the contribution of wind catchers to indoor air environments and energy savings if any. Design/methodology/approach – Most of the modeling techniques for assessing wind catchers performance are theoretical. Post-occupancy evaluation studies of buildings will provide an insight into the operation of these building components and help to inform facilities managers. A case study for POE was presented in this paper. Findings – The monitoring of the summer and winter month operations showed that the indoor air quality parameters were kept within the design target range. The design control strategy failed to record data regarding the operation, opening time and position of wind catchers system. Though the implemented control strategy was working effectively in monitoring the operation of mechanical ventilation systems, i.e. AHU, did not integrate the wind catchers with the mechanical ventilation system. Research limitations/implications – Owing to short-falls in the control strategy implemented in this project, it was found difficult to quantify and verify the contribution of the wind catchers to the internal conditions and, hence, energy savings. Practical implications – Controlling the operation of the wind catchers via the AHU will lead to isolation of the wind catchers in the event of malfunctioning of the AHU. Wind catchers will contribute to the ventilation of space, particularly in the summer months. Originality/value – This paper demonstrates the value of POE as indispensable tool for FM professionals. It further provides insight into the application of natural ventilation systems in building for healthier indoor environments at lower energy cost. The design of the control strategy for natural ventilation and air-conditioning should be considered at the design stage involving the FM personnel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IPLV overall coefficient, presented by Air-Conditioning and Refrigeration Institute (ARI) of America, shows running/operation status of air-conditioning system host only. For overall operation coefficient, logical solution has not been developed, to reflect the whole air-conditioning system under part load. In this research undertaking, the running time proportions of air-conditioning systems under part load have been obtained through analysis on energy consumption data during practical operation in all public buildings in Chongqing. This was achieved by using analysis methods, based on the statistical energy consumption data distribution of public buildings month-by-month. Comparing with the weight number of IPLV, part load operation coefficient of air-conditioning system, based on this research, does not only show the status of system refrigerating host, but also reflects and calculate energy efficiency of the whole air-conditioning system. The coefficient results from the processing and analyzing of practical running data, shows the practical running status of area and building type (actual and objective) – not clear. The method is different from model analysis which gets IPLV weight number, in the sense that this method of coefficient results in both four equal proportions and also part load operation coefficient of air-conditioning system under any load rate as necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct outdoor air cooling contributes a lot not only to the improvement of the indoor air quality but also to the energy saving. Its full use will reduce the water chiller’s running time especially in some stores where cooling load keeps much higher and longer than that in other buildings. A novel air-conditioning system named Combined Variable Air Volume system (CVAV), combining a normal AHU with a separate outdoor air supply system, was proposed firstly by the authors. The most attractive feature of the system is its full utilization of cooling capacity and freshness of outdoor air in the transition period of the year round. On the basis of the obtain of the dynamic cooling loads of the typical shopping malls in different four cities located in cold climates in China with the aid of DOE-2, the possibility of increasing the amount of outdoor air volume of CVAV system in the transition period instead of operating the water chillers was confirmed. Moreover, a new concept, Direct Outdoor Air Cooling Efficiency (DOACE), was defined as the ratio of cooling capacity of outdoor air to the water chiller, indicating the degree of outdoor air’s utilization. And the DOACE of the CVAV was calculated and compared with that of conventional all-air constant volume air-conditioning systems, the results showed that CVAV bear much more energy saving potential with the 10%~19% higher DOACE and it is a kind of energy efficient systems and can improve the indoor air quality as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A student from the New York Trade School in the Air Conditioning and Refrigeration Dept. looks at plans on top of a building. Black and white photograph contains some damage from adhesive and writing on the front.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This black and white photograph shows classroom space of the Air Conditioning/Refrigeration Dept. empty of students. Black and white photograph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Students in the Air Conditioning/Refrigeration Dept. of the New York Trade School are shown hard at work in the classroom. Notice the sign at the rear of the room that reads "Watch Out for Pipes on Floor." Black and white photograph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This shows three students working on a unit in the Air Conditioning and Refrigeration Department of the New York Trade School. Black and white photograph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Students are shown working in the drafting section of the Air Conditioning Department of the New York Trade School. Black and white photograph that has some damage around the edges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four students from the New York Trade School are pictured working on an air conditioning unit. Photograph is black and white.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a thermoeconomic analysis method based on the first and second law of thermodynamics and applied to an evaporative cooling system coupled to an adsorption dehumidifier, is presented. The main objective is the use of a method called exergetic manufacturing cost (EMC) applied to a system that operates in three different conditions to minimize the operation costs. Basic parameters are the RIP ratio (reactivation air/process air) and the reactivation air temperature. Results of this work show that the minimum reactivation temperature and the minimum RIP ratio corresponds to the smaller EMC. This result can be corroborated through an energetic analysis. It is noted that this case is also the one corresponding to smaller energy loss. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaporative cooling operates using water and air as working fluids. It consists in water evaporation, through the passage of an airflow, thus decreasing the air temperature. This system has a great potential to provide thermal comfort in places where air humidity is low, being, however, less efficient where air humidity is high. A way to solve this problem is to use dehumidifiers to pre-conditioning the process air. This paper presents a system that can be used in humid climates coupling desiccant dehumidification equipment to evaporative coolers. The paper shows, initially, the main characteristics of the evaporative cooling and of the adsorption dehumidification systems. Later on the coupled systems, in which occurs a dehumidification by adsorption in a counter flow rotary heat exchanger following the evaporate cooling of the air in evaporative coolers, are analyzed. The thermodynamic equations of state are also presented. Following, this paper analyzes some operation parameters such as: reactivation temperature, R/P relationship (reactivation air flow/ process air flow) and the thermodynamic conditions of the entering air flow. The paper shows the conditions for the best operation point, with regard to thermal comfort conditions and to the energy used in the process. In addition this paper presents an application of the system in different climate characteristics of several tropical and equatorial cities. Copyright © 2005 by ABCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The factors that have influence on the energy consumption of a small air conditioning system that are worth mentioning are the efficiencies of the compressor, evaporator and condenser, the form that the refrigerant flow is controlled, the fan model used, and climatic conditions. Within the climate issue, an interesting factor is that the relative humidity when it comes to the effect that it causes, especially in the performance of the air condenser, which generally is not considered in the projects. This study aims to evaluate the influence of humidity on the coefficient of system performance (COP), seeking to quantify their influence when it happens. The tests were performed on a testing bench, mounted at the Laboratory for Energy Efficiency (LAMOTRIZ) UNESP-Campus Guaratinguetá. In the study, the wet bulb temperature was ranged, keeping the rotation of the scroll compressor with application of a frequency inverter in its best performance. The test bench is provided with a supervisory system of data collection that is also able to control all functions of the bench. In the results, there was a significant influence, particularly when comparing high humidity conditions with low humidity, noting that only over 65% relative humidity is that significant changes are observed in the COP of the system. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demands in production and associate costs at power generation through non renewable resources are increasing at an alarming rate. Solar energy is one of the renewable resource that has the potential to minimize this increase. Utilization of solar energy have been concentrated mainly on heating application. The use of solar energy in cooling systems in building would benefit greatly achieving the goal of non-renewable energy minimization. The approaches of solar energy heating system research done by initiation such as University of Wisconsin at Madison and building heat flow model research conducted by Oklahoma State University can be used to develop and optimize solar cooling building system. The research uses two approaches to develop a Graphical User Interface (GUI) software for an integrated solar absorption cooling building model, which is capable of simulating and optimizing the absorption cooling system using solar energy as the main energy source to drive the cycle. The software was then put through a number of litmus test to verify its integrity. The litmus test was conducted on various building cooling system data sets of similar applications around the world. The output obtained from the software developed were identical with established experimental results from the data sets used. Software developed by other research are catered for advanced users. The software developed by this research is not only reliable in its code integrity but also through its integrated approach which is catered for new entry users. Hence, this dissertation aims to correctly model a complete building with the absorption cooling system in appropriate climate as a cost effective alternative to conventional vapor compression system.