993 resultados para air - sea exchanges
Resumo:
Oceans are key sources and sinks in the global budgets of significant atmospheric trace gases, termed Volatile Organic Compounds (VOCs). Despite their low concentrations, these species have an important role in the atmosphere, influencing ozone photochemistry and aerosol physics. Surprisingly, little work has been done on assessing their emissions or transport mechanisms and rates between ocean and atmosphere, all of which are important when modelling the atmosphere accurately.rnA new Needle Trap Device (NTD) - GC-MS method was developed for the effective sampling and analysis of VOCs in seawater. Good repeatability (RSDs <16 %), linearity (R2 = 0.96 - 0.99) and limits of detection in the range of pM were obtained for DMS, isoprene, benzene, toluene, p-xylene, (+)-α-pinene and (-)-α-pinene. Laboratory evaluation and subsequent field application indicated that the proposed method can be used successfully in place of the more usually applied extraction techniques (P&T, SPME) to extend the suite of species typically measured in the ocean and improve detection limits. rnDuring a mesocosm CO2 enrichment study, DMS, isoprene and α-pinene were identified and quantified in seawater samples, using the above mentioned method. Based on correlations with available biological datasets, the effects of ocean acidification as well as possible ocean biological sources were investigated for all examined compounds. Future ocean's acidity was shown to decrease oceanic DMS production, possibly impact isoprene emissions but not affect the production of α-pinene. rnIn a separate activity, ocean - atmosphere interactions were simulated in a large scale wind-wave canal facility, in order to investigate the gas exchange process and its controlling mechanisms. Air-water exchange rates of 14 chemical species (of which 11 VOCs) spanning a wide range of solubility (dimensionless solubility, α = 0:4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were obtained under various turbulent (wind speed at ten meters height, u10 = 0:8 to 15ms-1) and surfactant modulated (two different sized Triton X-100 layers) surface conditions. Reliable and reproducible total gas transfer velocities were obtained and the derived values and trends were comparable to previous investigations. Through this study, a much better and more comprehensive understanding of the gas exchange process was accomplished. The role of friction velocity, uw* and mean square slope, σs2 in defining phenomena such as waves and wave breaking, near surface turbulence, bubbles and surface films was recognized as very significant. uw* was determined as the ideal turbulent parameter while σs2 described best the related surface conditions. A combination of both uw* and σs2 variables, was found to reproduce faithfully the air-water gas exchange process. rnA Total Transfer Velocity (TTV) model provided by a compilation of 14 tracers and a combination of both uw* and σs2 parameters, is proposed for the first time. Through the proposed TTV parameterization, a new physical perspective is presented which provides an accurate TTV for any tracer within the examined solubility range. rnThe development of such a comprehensive air-sea gas exchange parameterization represents a highly useful tool for regional and global models, providing accurate total transfer velocity estimations for any tracer and any sea-surface status, simplifying the calculation process and eliminating inevitable calculation uncertainty connected with the selection or combination of different parameterizations.rnrn
Resumo:
The Bora wind is a mesoscale phenomenon which typically affects the Adriatic Sea basin for several days each year, especially during winter. The Bora wind has been studied for its intense outbreak across the Dinaric Alps. The properties of the Bora wind are widely discussed in the literature and scientific papers usually focus on the eastern Adriatic coast where strong turbulence and severe gust intensity are more pronounced. However, the impact of the Bora wind can be significant also over Italy, not only in terms of wind speed instensity. Depending on the synoptic pressure pattern (cyclonic or anticyclonic Bora) and on the season, heavy snowfall, severe storms, storm surges and floods can occur along the Adriatic coast and on the windward flanks of the Apennines. In the present work five Bora cases that occurred in recent years have been selected and their evolution has been simulated with the BOLAM-MOLOCH model set, developed at ISAC-CNR in Bologna. Each case study has been addressed by a control run and by several sensitivity tests, performed with the purpose of better understanding the role played by air-sea latent and sensible heat fluxes. The tests show that the removal of the fluxes induces modifications in the wind approching the coast and a decrease of the total precipitation amount predicted over Italy. In order to assess the role of heat fluxes, further analysis has been carried out: column integrated water vapour fluxes have been computed along the Italian coastline and an atmospheric water balance has been evaluated inside a box volume over the Adriatic Sea. The balance computation shows that, although latent heat flux produces a significant impact on the precipitation field, its contribution to the balance is relatively minor. The most significant and lasting case study, that of February 2012, has been studied in more detail in order to explain the impressive drop in the total precipitation amount simulated in the sensitivity tests with removed heat fluxes with respect to the CNTRL run. In these experiments relative humidity and potential temperature distribution over different cross-sections have been examined. With respect to the CNTRL run a drier and more stable boundary layer, characterised by a more pronounced wind shear at the lower levels, has been observed to establish above the Adriatic Sea. Finally, in order to demonstrate that also the interaction of the Bora flow with the Apennines plays a crucial role, sensitivity tests varying the orography height have been considered. The results of such sensitivity tests indicate that the propagation of the Bora wind over the Adriatic Sea, and in turn its meteorological impact over Italy, is influenced by both the large air-sea heat fluxes and the interaction with the Apennines that decelerate the upstream flow.
Resumo:
Approximately 250,000 measurements made for the pCO2 difference between surface water and the marine atmosphere, ΔpCO2, have been assembled for the global oceans. Observations made in the equatorial Pacific during El Nino events have been excluded from the data set. These observations are mapped on the global 4° × 5° grid for a single virtual calendar year (chosen arbitrarily to be 1990) representing a non-El Nino year. Monthly global distributions of ΔpCO2 have been constructed using an interpolation method based on a lateral advection–diffusion transport equation. The net flux of CO2 across the sea surface has been computed using ΔpCO2 distributions and CO2 gas transfer coefficients across sea surface. The annual net uptake flux of CO2 by the global oceans thus estimated ranges from 0.60 to 1.34 Gt-C⋅yr−1 depending on different formulations used for wind speed dependence on the gas transfer coefficient. These estimates are subject to an error of up to 75% resulting from the numerical interpolation method used to estimate the distribution of ΔpCO2 over the global oceans. Temperate and polar oceans of the both hemispheres are the major sinks for atmospheric CO2, whereas the equatorial oceans are the major sources for CO2. The Atlantic Ocean is the most important CO2 sink, providing about 60% of the global ocean uptake, while the Pacific Ocean is neutral because of its equatorial source flux being balanced by the sink flux of the temperate oceans. The Indian and Southern Oceans take up about 20% each.
Resumo:
The sea-surface microlayer (SML) is at the upper- most surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air- sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50µm thick SML and from the underlying water (ULW), ca. 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1 . Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.
Resumo:
We present air–sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27m above mean sea level, a.m.s.l.), each from a different period during 2014–2015. At sampling heights ≥18ma.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable (≤ ±20% in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air–sea exchange measurements in shelf regions. Covariance air–sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20±3; 38±3; 29±6 μmolem-2 d-1 at 15, 18, 27ma.m.s.l.) than during falling tides (14±2; 22±2; 21±5 μmolem-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air–sea CH4 flux by eddy covariance to be 20 μmolem-2 d-1 over hourly timescales (4 μmolem-2 d-1 over 24 h).
Resumo:
We present air–sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27m above mean sea level, a.m.s.l.), each from a different period during 2014–2015. At sampling heights ≥18ma.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable (≤ ±20% in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air–sea exchange measurements in shelf regions. Covariance air–sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20±3; 38±3; 29±6 μmolem-2 d-1 at 15, 18, 27ma.m.s.l.) than during falling tides (14±2; 22±2; 21±5 μmolem-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air–sea CH4 flux by eddy covariance to be 20 μmolem-2 d-1 over hourly timescales (4 μmolem-2 d-1 over 24 h).
Resumo:
Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.
Resumo:
Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.
Resumo:
Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.
Resumo:
Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.