28 resultados para agmatine
Resumo:
The influence of four levels (25, 50, 75 and 100%) of Class A pan evaporation replenishment (PER) on the marketable yield and bioactive amine content of American lettuce (Lactuca sativa cv Lucy Brown) grown under greenhouse conditions and drip irrigation was investigated. Lettuce was planted in 1.20 m x 2.10 m plots in a completely randomised block design with three replications. Lowest fresh head weights and diameters were obtained at 25% PER. Highest marketable yields and fresh head weights were obtained at 100% PER; however, no significant difference was observed when using 75% PER. The fresh head diameter was smaller only when using 25% PER. Four amines were detected in lettuce grown under 100% PER, with a total content of 7.60 mg kg(-1). Spermidine was the prevalent amine, followed by putrescine, cadaverine and agmatine. Higher spermidine and cadaverine levels were observed in the outer layers of leaves than in the intermediate and inner leaves. The contents of every amine except agmatine increased with water stress; however, a significant difference was observed only between 100 and 25% PER. The concentrations of accumulated putrescine were not capable of negatively affecting the sensory quality of the lettuce. (c) 2005 Society of Chemical Industry.
Resumo:
Molecular hybridization is a new concept in drug design and development based on the combination of pharmacophoric moieties of different bioactive substances to produce a new hyrid compound with improved affinity and efficacy, when compared to the parent drugs. Additionally, this strategy can results in compounds presenting modified selectivity profile, different and/or dual modes of action and reduced undesired side effects. So, in this described several example of different strategies for drug design, discovery and pharmacomodulation focused on new innovative hybrid compounds presenting analgesic, anti-inflammatory, platelet anti-aggregating, anti-infections, anticancer, cardio- and neuroactive properties.
Resumo:
This study determined if dentin proteases are denatured by phosphoric acid (PA) used in etch-and-rinse dentin adhesives. Dentin beams were completely demineralized with EDTA for 30 days. We acid-etched experimental groups by exposing the demineralized dentin beams to 1, 10, or 37 mass% PA for 15 sec or 15 min. Control beams were not exposed to PA but were incubated in simulated body fluid for 3 days to assay their total endogenous telopeptidase activity, by their ability to solubilize C-terminal crosslinked telopeptides ICTP and CTX from insoluble dentin collagen. Control beams released 6.1 ± 0.8 ng ICTP and 0.6 ± 0.1 ng CTX/mg dry-wt/3 days. Positive control beams pre-incubated in p-aminophenylmercuric acetate, a compound known to activate proMMPs, released about the same amount of ICTP peptides, but released significantly less CTX. Beams immersed in 1, 10, or 37 mass% PA for 15 sec or 15 min released amounts of ICTP and CTX similar to that released by the controls (p > 0.05). Beams incubated in galardin, an MMP inhibitor, or E-64, a cathepsin inhibitor, blocked most of the release of ICTP and CTX, respectively. It is concluded that PA does not denature endogenous MMP and cathepsin activities of dentin matrices. © 2013 International & American Associations for Dental Research.
Resumo:
With the emergence of new genetic lines due to intense breeding improvement on swine production in recent years, there is the need to adapt more accurately diets for the current sows, which have higher nutritional demands. The use of functional amino acids aimsto optimize the sows production and among these amino acids arginine has excelled. Arginine is involved in several important metabolic pathways, for example, it serves as a substrate forsynthesis of protein, creatine, nitric oxide, polyamines, citrulline, agmatine, ornithine, proline, and glutamate. It also helps to stimulate the secretion of some hormones such as insulin, prolactin, and growth hormone.As arginine plays such important roles, its supplementation has been suggested in lactation feed once it may enhance the development of the mammary gland and milk nutritional profile, thus, providing a better piglet development.Thus, the objective was to evaluate the effect of lactation feed supplementation with L-Arginine on the productive performance of primiparoussows and their respective litter.One hundred forty sows from the same genetic lineage on a commercial farm, located in the city of Oliveira, MG were used in this study, in a completely randomized design with five treatments: control diet without amino acid supplementation and four diets with increasing levels of L-Arginine supplementation (containing 98.5% purity) - 0.5, 1.0, 1.5, and 2.0%. Each treatment hadtwenty-eight swine sows, and the experimental unit was the sowand its litter.It was used ‘on top’ amino acid supplementation.All data was submitted to variance analysis using the SAEG Software: version 9.1 (SAEG, 2005).The data relating to days of lactation were compared by Tukey test (5%). L-Arginine supplementation levels in lactation feed did not influence (P>0.05) average daily feed intake, body condition variables, and blood parameters of the sows (urea, creatinine, and non-esterified fatty acids) as well as it did not affect the dry matter, crude protein, and amino acid profile of milk and the litter performance. There was effect (P<0.05) of days of lactation on the percentage of crude protein and amino acids in milk, which reduced througout the days of lactation. The L-Arginine supplementation on the lactation diet at levels of 0.5, 1.0, 1.5, and 2.0% did not influence the sow and its respective litter performance.
Resumo:
Relationships between endogenous levels of polyamines by thin layer chromatography (TLC) and gas chromatography (GC), nitrate and response to the application of ethylene were established between organic and conventional vegetables (broccoli, collard greens, carrots and beets), both raw and cooked. Responses to ethylene showed that organic plants were less responsive to the growth regulator. The levels of free polyamines obtained by TLC were higher in organic vegetables. Organic broccoli showed higher levels of putrescine (Put), and cooking resulted in lowering the overall content of these amines. Conventional collard green showed the highest level of putrescine in the leaves compared with organic. Tubers of carrots and beets contain the highest levels of Put. These plants also contain high levels of spermine. GC analysis showed the highest polyamines contents compared with those obtained by TLC. Cooking process decreased putrescine and cadaverine content, both in conventionally and organically grown vegetables. Organic beets contain lower NO3(-) compared with its conventional counterpart.
Resumo:
The calculation of projection structures (PSs) from Protein Data Bank (PDB)-coordinate files of membrane proteins is not well-established. Reports on such attempts exist but are rare. In addition, the different procedures are barely described and thus difficult if not impossible to reproduce. Here we present a simple, fast and well-documented method for the calculation and visualization of PSs from PDB-coordinate files of membrane proteins: the projection structure visualization (PSV)-method. The PSV-method was successfully validated using the PS of aquaporin-1 (AQP1) from 2D crystals and cryo-transmission electron microscopy, and the PDB-coordinate file of AQP1 determined from 3D crystals and X-ray crystallography. Besides AQP1, which is a relatively rigid protein, we also studied a flexible membrane transport protein, i.e. the L-arginine/agmatine antiporter AdiC. Comparison of PSs calculated from the existing PDB-coordinate files of substrate-free and L-arginine-bound AdiC indicated that conformational changes are detected in projection. Importantly, structural differences were found between the PSV-method calculated PSs of the detergent-solubilized AdiC proteins and the PS from cryo-TEM of membrane-embedded AdiC. These differences are particularly exciting since they may reflect a different conformation of AdiC induced by the lateral pressure in the lipid bilayer.
Resumo:
The L-arginine/agmatine antiporter AdiC is a key component of the arginine-dependent extreme acid resistance system of Escherichia coli. Phylogenetic analysis indicated that AdiC belongs to the amino acid/polyamine/organocation (APC) transporter superfamily having sequence identities of 15-17% to eukaryotic and human APC transporters. For functional and structural characterization, we cloned, overexpressed, and purified wild-type AdiC and the point mutant AdiC-W293L, which is unable to bind and consequently transport L-arginine. Purified detergent-solubilized AdiC particles were dimeric. Reconstitution experiments yielded two-dimensional crystals of AdiC-W293L diffracting beyond 6 angstroms resolution from which we determined the projection structure at 6.5 angstroms resolution. The projection map showed 10-12 density peaks per monomer and suggested mainly tilted helices with the exception of one distinct perpendicular membrane spanning alpha-helix. Comparison of AdiC-W293L with the projection map of the oxalate/formate antiporter from Oxalobacter formigenes, a member from the major facilitator superfamily, indicated different structures. Thus, two-dimensional crystals of AdiC-W293L yielded the first detailed view of a transport protein from the APC superfamily at sub-nanometer resolution.
Resumo:
PURPOSE: Early visual defects in degenerative diseases such as retinitis pigmentosa (RP) may arise from phased remodeling of the neural retina. The authors sought to explore the functional expression of ionotropic (iGluR) and group 3, type 6 metabotropic (mGluR6) glutamate receptors in late-stage photoreceptor degeneration. METHODS: Excitation mapping with organic cations and computational molecular phenotyping were used to determine whether retinal neurons displayed functional glutamate receptor signaling in rodent models of retinal degeneration and a sample of human RP. RESULTS: After photoreceptor loss in rodent models of RP, bipolar cells lose mGluR6 and iGluR glutamate-activated currents, whereas amacrine and ganglion cells retain iGluR-mediated responsivity. Paradoxically, amacrine and ganglion cells show spontaneous iGluR signals in vivo even though bipolar cells lack glutamate-coupled depolarization mechanisms. Cone survival can rescue iGluR expression by OFF bipolar cells. In a case of human RP with cone sparing, iGluR signaling appeared intact, but the number of bipolar cells expressing functional iGluRs was double that of normal retina. CONCLUSIONS: RP triggers permanent loss of bipolar cell glutamate receptor expression, though spontaneous iGluR-mediated signaling by amacrine and ganglion cells implies that such truncated bipolar cells still release glutamate in response to some nonglutamatergic depolarization. Focal cone-sparing can preserve iGluR display by nearby bipolar cells, which may facilitate late RP photoreceptor transplantation attempts. An instance of human RP provides evidence that rod bipolar cell dendrite switching likely triggers new gene expression patterns and may impair cone pathway function.
Resumo:
Until recently, a capacity for apoptosis and synthesis of nitric oxide (⋅NO) were viewed as exclusive to multicellular organisms. The existence of these processes in unicellular parasites was recently described, with their biological significance remaining to be elucidated. We have evaluated l-arginine metabolism in Trypanosoma cruzi in the context of human serum-induced apoptotic death. Apoptosis was evidenced by the induction of DNA fragmentation and the inhibition of [3H]thymidine incorporation, which were inhibited by the caspase inhibitor Ac-Asp-Glu-Val-aspartic acid aldehyde (DEVD-CHO). In T. cruzi exposed to death stimuli, supplementation with l-arginine inhibited DNA fragmentation, restored [3H]thymidine incorporation, and augmented parasite ⋅NO production. These effects were inhibited by the ⋅NO synthase inhibitor Nω-nitroarginine methyl ester (l-NAME). Exogenous ⋅NO limited DNA fragmentation but did not restore proliferation rates. Because l-arginine is also a substrate for arginine decarboxylase (ADC), and its product agmatine is a precursor for polyamine synthesis, we evaluated the contribution of polyamines to limiting apoptosis. Addition of agmatine, putrescine, and the polyamines spermine and spermidine to T. cruzi sustained parasite proliferation and inhibited DNA fragmentation. Also, the ADC inhibitor difluoromethylarginine inhibited l-arginine-dependent restoration of parasite replication rates, while the protection from DNA fragmentation persisted. In aggregate, these results indicate that T. cruzi epimastigotes can undergo programmed cell death that can be inhibited by l-arginine by means of (i) a ⋅NO synthase-dependent ⋅NO production that suppresses apoptosis and (ii) an ADC-dependent production of polyamines that support parasite proliferation.
Resumo:
Analogs of the 29 amino acid sequence of human growth hormone-releasing hormone (hGH-RH) with agmatine (Agm) in position 29, desaminotyrosine (Dat) in position 1, norleucine (Nle) in position 27, and L-alpha-aminobutyric acid (Abu) in position 15 have been synthesized, and their biological activity was evaluated. Some peptides contained one or two residues of ornithine (Orn) instead of Lys in positions 12 and 21 and additional replacements in positions 8 and 28. All analogs were found to be more potent than hGH-RH-(1-29)-NH2 in the superfused rat pituitary cell system. In tests in vivo in rats after subcutaneous administration, the analogs JI-22, [Dat1, Orn12,21, Abu15, Nle27, Agm29]hGH-RH-(1-29); JI-34, [Dat1, Orn12,21,Abu15,Nle27, Asp28, Agm29]hGH-RH-(1-29); JI-36, [Dat1, Thr8, Orn12,21, Abu15,Nle27,Asp28,Agm29]hGH-RH-(1-29); and JI-38, [Dat1,Gln8, Orn12,21,Abu15,Nle27,Asp28,Agm29]hGH-RH-(1 -29) displayed a potency 44.6,80.9,95.8, and 71.4 times greater, respectively, than that of hGH-RH-(1-29)-NH2 at 15 min and 217.1, 89.7, 87.9, and 116.8 times greater at 30 min. After intravenous administration, JI-22, JI-36, and JI-38 were 3.2-3.8 times more potent than hGH-RH-(1-29)-NH2 at 5 min and 6.1-8.5 times more active at 15 min. All analogs were found to have higher binding affinities for GH-RH receptors on rat pituitary cells than hGH-RH-(1-29)-NH2. Because of high activity and greater stability, these analogs could be considered for therapy of patients with growth hormone deficiency.
Resumo:
The in vivo and in vitro characteristics of the I2 binding site were probed using the technique of drug discrimination and receptor autoradiography. Data presented in this thesis indicates the I2 ligand 2-BFI generates a cue in drug discrimination. Further studies indicated agmatine, a proposed endogenous imidazoline ligand, and a number of imidazoline and imidazole analogues of 2-BFI substitute significantly for 2-BFI. In addition to specific I2 ligands the administration of NRl's (noradrenaline reuptake inhibitors), the sympathomimetic d-amphetamine, the α1-adrenoceptor agonist methoxamine, but not the β1 agonist dobutamine or the β2 agonist salbutamol, gave rise to significant levels of substitution for the 2-BFI cue. The administration of the α1-adrenoceptor antagonist WB4101, prior to 2- BFI itself significantly reduced levels of 2-BFI appropriate responding. Administration of the reversible MAO-A inhibitors moclobemide and Ro41-1049, but not the reversible MAO-B inhibitors lazabemide and Ro16-6491, gave rise to potent dose dependent levels of substitution for the 2-BFI cue. Further studies indicated the administration of a number of β-carbolines and the structurally related indole alkaloid ibogaine also gave rise to dose dependent significant levels of substitution. Due to the relationship of indole alkaloids to serotonin the 5-HT releaser fenfluramine and a number of SSRI's (selective serotonin reuptake inhibitor) were also administered and these compounds gave rise to significant partial (20-80% responses to the 2-BFI lever) levels of substitution. The autoradiographical studies reported here indicate [3H]2-BFI labels I2 sites within the rat arcuate nucleus, area postrema, pineal gland, interpeduncular nucleus and subfornical organ. Subsequent experiments confirmed that the drug discrimination dosing schedule significantly increases levels of [3H]2-BFI 12 binding within two of these nuclei. However, levels of [3H]2-BFI specific binding were significantly reduced within four of these nuclei after chronic treatment with the irreversible MAO inhibitors deprenyl and tranylcypromine but not pargyline, which only reduced levels significantly in two. Further autoradiographical studies indicated that the distribution of [3H]2-BFI within the C57/B mouse compares favourably to that within the rat. Comparison of these levels of binding to those from transgenic mice who over-express MAO-B indicates two possibly distinct populations of [3H]2-BFI 12 sites exist in mouse brain. The data presented here indicates the 2-BFI cue is associated with the selective activation of α1-adrenoceptors and possibly 5-HT receptors. 2-BFI trained rats recognise reversible MAO-A but not MAO-B inhibitors. However, data within this thesis indicates the autoradiographical distribution of I2 sites bears a closer resemblance to that of MAO-B not MAO-A and further studies using transgenic mice that over-express MAO-B suggests a non-MAO-B I2 site exists in mouse brain.
Resumo:
Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca 2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via &agr;-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 ± μM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.
Resumo:
Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via α-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 µM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.