990 resultados para aerobic wastwater treatment
Resumo:
"Final report (SW-16rg)--on work performed by Purdue University under solid waste research grant no. EC-00244 and by the University of Illinois under solid waste research grant no. EC-00245."
Resumo:
IR radiation has been studied for micro-organism inactivation of bacterial spores on metal substrates [1] and on metal and paper substrates [2]. A near-point near infrared laser water treatment apparatus for use in dental hand-pieces was also developed [3]. To date water sterilisation research using a mid-IR laser technique is very rare. According to the World Health Organisation [4], examinations for faecal indicator bacteria remain the most sensitive and specific way of assessing the hygienic quality of water. Bacteria that fall into this group are E. coli, other coliform bacteria (including E. cloacae) and to a lesser extent, faecal streptococci [5]. Protozoan cysts from organisms which cause giardiasis are the most frequently identified cause of waterborne diseases in developed countries [6,7]. The use of aerobic bacterial endospores to monitor the efficiency of various water treatments has been shown to provide a reliable and simple indicator of overall performance of water treatment[8,9].The efficacy of IR radiation for water disinfection compared to UV treatment has been further investigated in the present study. In addition FTIR spectroscopy in conjunction with Principle Component Analysis was used to characterise structural changes within the bacterial cells and endospores following IR laser treatment. Changes in carbohydrate content of E. cloacae following IR laser treatment were observed.
Resumo:
There is a growing interest in management of MSW through micro-treatment of organic fraction of municipal solid wastes (OFMSW) in many cities of India. The OFMSW fraction is high (> 80%) in many pockets within South Indian cities like Bangalore, Chikkamagalur, etc. and is largely represented by vegetable, fruit, packing and garden wastes. Among these, the last three have shown problems for easy decomposition. Fruit wastes are characterized by a large pectin supported fraction that decomposes quickly to organic acids (becomes pulpy) that eventually slow down anaerobic and aerobic decomposition processes. Paper fraction (newsprint and photocopying paper) as well as paddy straw (packing), bagasse (from cane juice stalls) and tree leaf litter (typical garden waste and street sweepings) are found in reasonably large proportions in MSW. These decompose slowly due to poor nutrients or physical state. We have examined the suitability of these substrates for micro-composting in plastic bins by tracking decomposition pattern and physical changes. It was found that fruit wastes decompose rapidly to produce organic acids and large leachate fraction such that it may need to be mixed with leachate absorbing materials (dry wastes) for good composting. Leaf litter, paddy straw and bagasse decompose to the tune of 90, 68 and 60% VS and are suitable for composting micro-treatment. Paper fractions even when augmented with 10% leaf compost failed to show appreciable decomposition in 50 days. All these feedstocks were found to have good biological methane potential (BMP) and showed promise for conversion to biogas under a mixed feed operation. Suitability of this approach was verified by operating a plug-flow type anaerobic digester where only leaf litter gathered nearby (as street sweepings) was used as feedstock. Here only a third of the BMP was realized at this scale (0.18 m(3) biogas/kg VS 0.55 m(3)/kg in BMP). We conclude that anaerobic digestion in plug-flow like digesters appear a more suitable micro-treatment option (2-10 kg VS/day) because in addition to compost it also produces biogas for domestic use nearby.
Resumo:
Manmade waterbodies have traditionally been used for domestic and irrigation purposes. Unplanned urbanization and ad-hoc approaches have led to these waterbodies receiving untreated sewage. This enriches and eutrophies the waterbody. A physicochemical and biological analysis of sewage-fed Varthur Lake in Bangalore was carried out and its treatment capabilities in terms of BOD removal, nutrient assimilation and self-remediation were assessed. Anaerobic conditions (0 mg/L) prevail at the inlet which improves towards the outlets due to algal aeration. This removed > 50% BOD in the monsoon season but was inhibited by floating macrophytes in all other seasons. Alkalinity, TDS, conductivity and hardness values were higher when compared to earlier studies. This study shows the lake behaves as an anaerobic~aerobic lagoon with a residence time of 4.8 d treating the wastewater to a considerable extent. Further research is required to optimise the system performance.
Resumo:
Urban water bodies frequently receive untreated sewage and water levels in such water bodies are maintained by daily inputs of sewage. They function as “variable-zone” anaerobic-aerobic lagoons suffering several macrophyte, biotic and abiotic stresses. We have studied two such lakes in Bangalore (Bellandur-360 ha and Varthur-220 ha) to understand whether such an occurrence could be made beneficial (maintaining water levels as well as treatment). Such hypertrophic water body receives sewage at 180-250mg/L and is discharged at 25-80mg/L COD/BOD in different seasons. In an earlier study we reported macrophyte altering the purification function of the water body. In this paper we studied the impact of phytoplankton dynamics and macrophyte cover on the functions such as organic load removal. Algal community analysis, algal biomass, macrophyte cover, water quality, nutrient status was studied seasonally during 2009-2010. Oxygen deficiency and sometimes anoxia, recorded from surface samples resulted in high quantities of NH4+-N (30-40mg/L) and phosphate (0.5-4mg/L)-characteristics of anoxic hypertrophic urban lakes. The productiveness favoured high phytoplanktonic community characterized by small cells (<10μm; Chlorella sp. - highest numbers). The lake could be clearly demarcated into an initial anaerobic zone (40% area), a facultative zone (20%) and an aerobic zone (40%) based on redox values and GIS/bathymetry. During summer the lake is covered by floating macrophytes converting the lake into an anoxic/anaerobic water pool subduing the water purification function as well as aesthetics. When macrophytes are controlled such sewage fed water bodies can be used for treating urban wastewater while also maintaining water sustainability in these semi-arid ecosystems. This paper reports the community dynamics of phytoplankton, their function and competition with macrophytes.
Resumo:
BACKGROUND: The Exercise Intensity Trial (EXcITe) is a randomized trial to compare the efficacy of supervised moderate-intensity aerobic training to moderate to high-intensity aerobic training, relative to attention control, on aerobic capacity, physiologic mechanisms, patient-reported outcomes, and biomarkers in women with operable breast cancer following the completion of definitive adjuvant therapy. METHODS/DESIGN: Using a single-center, randomized design, 174 postmenopausal women (58 patients/study arm) with histologically confirmed, operable breast cancer presenting to Duke University Medical Center (DUMC) will be enrolled in this trial following completion of primary therapy (including surgery, radiation therapy, and chemotherapy). After baseline assessments, eligible participants will be randomized to one of two supervised aerobic training interventions (moderate-intensity or moderate/high-intensity aerobic training) or an attention-control group (progressive stretching). The aerobic training interventions will include 150 mins.wk⁻¹ of supervised treadmill walking per week at an intensity of 60%-70% (moderate-intensity) or 60% to 100% (moderate to high-intensity) of the individually determined peak oxygen consumption (VO₂peak) between 20-45 minutes/session for 16 weeks. The progressive stretching program will be consistent with the exercise interventions in terms of program length (16 weeks), social interaction (participants will receive one-on-one instruction), and duration (20-45 mins/session). The primary study endpoint is VO₂peak, as measured by an incremental cardiopulmonary exercise test. Secondary endpoints include physiologic determinants that govern VO₂peak, patient-reported outcomes, and biomarkers associated with breast cancer recurrence/mortality. All endpoints will be assessed at baseline and after the intervention (16 weeks). DISCUSSION: EXCITE is designed to investigate the intensity of aerobic training required to induce optimal improvements in VO₂peak and other pertinent outcomes in women who have completed definitive adjuvant therapy for operable breast cancer. Overall, this trial will inform and refine exercise guidelines to optimize recovery in breast and other cancer survivors following the completion of primary cytotoxic therapy. TRIAL REGISTRATION: NCT01186367.
Resumo:
It is commonly accepted that aerobic exercise increases hippocampal neurogenesis, learning and memory, as well as stress resiliency. However, human populations are widely variable in their inherent aerobic fitness as well as their capacity to show increased aerobic fitness following a period of regimented exercise. It is unclear whether these inherent or acquired components of aerobic fitness play a role in neurocognition. To isolate the potential role of inherent aerobic fitness, we exploited a rat model of high (HCR) and low (LCR) inherent aerobic capacity for running. At a baseline, HCR rats have two- to three-fold higher aerobic capacity than LCR rats. We found that HCR rats also had two- to three- fold more young neurons in the hippocampus than LCR rats as well as rats from the heterogeneous founder population. We then asked whether this enhanced neurogenesis translates to enhanced hippocampal cognition, as is typically seen in exercise-trained animals. Compared to LCR rats, HCR rats performed with high accuracy on tasks designed to test neurogenesis-dependent pattern separation ability by examining investigatory behavior between very similar objects or locations. To investigate whether an aerobic response to exercise is required for exercise-induced changes in neurogenesis and cognition, we utilized a rat model of high (HRT) and low (LRT) aerobic response to treadmill training. At a baseline, HRT and LRT rats have comparable aerobic capacity as measured by a standard treadmill fit test, yet after a standardized training regimen, HRT but not LRT rats robustly increase their aerobic capacity for running. We found that sedentary LRT and HRT rats had equivalent levels of hippocampal neurogenesis, but only HRT rats had an elevation in the number of young neurons in the hippocampus following training, which was positively correlated with accuracy on pattern separation tasks. Taken together, these data suggest that a significant elevation in aerobic capacity is necessary for exercise-induced hippocampal neurogenesis and hippocampal neurogenesis-dependent learning and memory. To investigate the potential for high aerobic capacity to be neuroprotective, doxorubicin chemotherapy was administered to LCR and HCR rats. While doxorubicin induces a progressive decrease in aerobic capacity as well as neurogenesis, HCR rats remain at higher levels on those measures compared to even saline-treated LCR rats. HCR and LCR rats that received exercise training throughout doxorubicin treatment demonstrated positive effects of exercise on aerobic capacity and neurogenesis, regardless of inherent aerobic capacity. Overall, these findings demonstrate that inherent and acquired components of aerobic fitness play a crucial role not only in the cardiorespiratory system but also the fitness of the brain.
Resumo:
Background: Anaerobic bacteria are increasingly regarded as important in cystic fibrosis (CF) pulmonary infection. The aim of this study was to determine the effect of antibiotic treatment on aerobic and anaerobic microbial community diversity and abundance during exacerbations in patients with CF.
Methods: Sputum was collected at the start and completion of antibiotic treatment of exacerbations and when clinically stable. Bacteria were quantified and identified following culture, and community composition was also examined using culture-independent methods.
Results: Pseudomonas aeruginosa or Burkholderia cepacia complex were detected by culture in 24/26 samples at the start of treatment, 22/26 samples at completion of treatment and 11/13 stable samples. Anaerobic bacteria were detected in all start of treatment and stable samples and in 23/26 completion of treatment samples. Molecular analysis showed greater bacterial diversity within sputum samples than was detected by culture; there was reasonably good agreement between the methods for the presence or absence of aerobic bacteria such as P aeruginosa (kappa=0.74) and B cepacia complex (kappa=0.92), but agreement was poorer for anaerobes. Both methods showed that the composition of the bacterial community varied between patients but remained relatively stable in most individuals despite treatment. Bacterial abundance decreased transiently following treatment, with this effect more evident for aerobes (median decrease in total viable count 2.3 x 10(7) cfu/g, p=0.005) than for anaerobes (median decrease in total viable count 3 x 10(6) cfu/g, p=0.046).
Conclusion: Antibiotic treatment targeted against aerobes had a minimal effect on abundance of anaerobes and community composition, with both culture and molecular detection methods required for comprehensive characterisation of the microbial community in the CF lung. Further studies are required to determine the clinical significance of and optimal treatment for these newly identified bacteria.
Resumo:
A process for the treatment of water comprising at least the steps of : (a) providing the water in laminar flow; and (b) providing bubblefree aeration to the water. The present invention introduces aerobic treatment into wastewater settlement without any hindrance to the settlement process. The present invention is useable for any settlement step or stage, without limitation, the commonest being primary settlement or final settling.
Resumo:
Although antibiotics from different classes are frequently prescribed in combination to prevent the development of resistance amongst Cystic Fibrosis (CF) respiratory pathogens, there is a lack of data as to the efficacy of this approach. We have previously shown that a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T) has excellent activity against CF pathogens with increased activity under physiologically relevant anaerobic conditions. Therefore, the aim of this study was to determine whether F:T could delay or prevent the onset of resistance compared to either fosfomycin or tobramycin alone under aerobic and anaerobic conditions. The frequency of spontaneous mutants arising following exposure to fosfomycin, tobramycin and F:T was determined for clinical Pseudomonas aeruginosa and MRSA isolates under aerobic and anaerobic conditions. The effect of sub-inhibitory concentrations of fosfomycin, tobramycin and F:T on the induction of resistance was also investigated, with the stability of resistance and fitness cost associated with resistance assessed if it developed. P. aeruginosa and MRSA isolates had a lower frequency of spontaneous mutants to F:T compared to fosfomycin and tobramycin under both aerobic and anaerobic conditions. There was a maximum two-fold increase in F:T MICs when P. aeruginosa and MRSA isolates were passaged in sub-inhibitory F:T for 12 days. In contrast, sequential resistance to fosfomycin and tobramycin developed quickly (n = 3 days for both) after passage in sub-inhibitory concentrations. Once developed, both fosfomycin and tobramycin resistance was stable and not associated with a biological fitness cost to either P. aeruginosa or MRSA isolates. The results of this study suggest that F:T may prevent the development of resistance compared to fosfomycin or tobramycin alone under aerobic and physiologically relevant anaerobic conditions. F:T may be a potential treatment option in CF patients chronically colonised by MRSA and/or P. aeruginosa.
Resumo:
Ruthenium hydroxide supported on silica-coated magnetic nanoparticles was shown to be an efficient heterogeneous catalyst for the liquid-phase oxidation of a wide range of alcohols using molecular oxygen as a sole oxidant in the absence of co-catalysts or additives. The material was prepared through the loading of the amino modified support with ruthenium(III) ions from an aqueous solution of ruthenium(III) chloride followed by treatment with sodium hydroxide to form ruthenium hydroxide species. Characterizations suggest that ruthenium hydroxide is highly dispersed on the support surface, with no ruthenium containing crystalline phases being detected. Various carbonylic monoterpenoids important for fragrance and pharmaceutical industries can be obtained in good to excellent yields starting from biomass-based monoterpenic alcohols, such as isobomeol, perillyl alcohol, carveol, and citronellol. The catalyst undergoes no metal leaching and can be easily recovered by the application of an external magnet and re-used. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Fermentation and aerobic stability were evaluated in high-moisture corn (HMC) silage inoculated with different levels of Lactobacillus buchneri. The HMC composed of 654 g/kg dry matter (DM) was ensiled in quadruplicate laboratory silos (7 L) per treatment. L. buchneri 40788 was applied at 5 × 10(4); 1 × 10(5); 5 × 10(5); and 1 × 10(6) cfu/g to the ground corn. Silages with no additive were used as controls. After 140 d of ensiling, the silages were subjected to an aerobic stability evaluation for 12 days in which the chemical parameters, microbiological parameters and silage temperature were measured to determine the aerobic deterioration. The lactic acid, acetic acid and propionic acid concentrations did not differ between silages. The fermentation parameters of HMC were not affected by L. buchneri. The HMC containing L. buchneri had a low number of yeast and mould colonies and a more stable pH until in the eighth measurement, which improved the aerobic stability without affecting gas loss. Doses of L. buchneri greater than or equal to 5 × 10(5) cfu/g applied to the HMC were the most efficient in control of aerobic deterioration.
Resumo:
Physical exercise and statins, recommended interventions to dyslipidaemia treatment, are independently related to cardiomyocytes alterations, characterized by miocardic hypertrophy and apoptosis, respectively. Thus, the objective of the present study was to analyze the effects of statin and aerobic physical exercise association in the morphometric parameters of cardiac cell nucleus. 40 male rats adults were divided into four groups: exercised (DE); sedentary (DS), exercised and statin use (DES); sedentary and statin use (DSS). The animals received during the whole experimental period a hiperlipidic diet added 20% of coconut oil and 1.25% of cholesterol; after 30 days of its ingestion, a blood collection was made to verify the dyslipidaemia. Simvastatin (20 mg) was taken five days a week, during eight weeks. During this period, the animals exercised 60 minutes daily in the treadmill. After the last day of the protocol, the cardiac muscle was collected and maintained in liquid nitrogen (-180 degrees C); the cuts were stained by Hematoxilin-Eosin method, and the cardiac fibers were submitted to the nuclear morphometric analyses. The data were analyzed using descriptive analyses, paired T test, Kruskal-Wallis test and Dunn post hoc test; for all analyses, it was adopted p<0.05. It was verified that the group receiving statin presented values statistically significant in comparison to the other groups, in the tridimensional and linear variables. The exercised and statin group, the values obtained in the morphometric analyses were similar to the control group. It is suggested that statins alone can cause alterations in the nucleus of cardiac cells that can be related to apoptosis occurrence and, when exercise is practiced associated to statin administration, the effects of statin can be reduced, what can be related to beneficial adaptations of cardiac mitochondrial in response to physical exercise, turning them more resistant to apoptotic stimuli.
Resumo:
According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q(10) (CoQ(10)) has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP). The property of CoQ(10) to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ(10) has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ(10) before exposing patients to unnecessary health risks at significant costs.
Resumo:
The hydrodynamic characterization and the performance evaluation of an aerobic three phase fluidized bed reactor in wastewater fish culture treatment are presented in this report. The objective of this study was to evaluate the organic matter, nitrogen and phosphorous removal efficiency in a physical and biological wastewater treatment system of an intensive Nile Tilapia laboratory production with recirculation. The treatment system comprised of a conventional sedimentation basin operated at a hydraulic detention time HDT of 2.94 h and an aerobic three phase airlift fluidized bed reactor AAFBR operated at an 11.9 min HDT. Granular activated carbon was used as support media with density of 1.64 g/cm(3) and effective size of 0.34 mm in an 80 g/L constant concentration. Mean removal efficiencies of BOD, COD, phosphorous, total ammonia nitrogen and total nitrogen were 47%, 77%, 38%, 27% and 24%, respectively. The evaluated system proved an effective alternative for water reuse in the recirculation system capable of maintaining water quality characteristics within the recommended values for fish farming and met the Brazilian standards for final effluent discharges with exception of phosphorous values. (C) 2011 Elsevier B.V. All rights reserved.