991 resultados para aerobic metabolism


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent lines of evidence suggest that the beneficial effects of olive oil are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. The aim of this work was determine the effects of olive oil and its components, oleic acid and the polyphenol dihydroxyphenylethanol (DPE), on serum lipids, oxidative stress, and energy metabolism on cardiac tissue. Twenty four male Wistar rats, 200 g, were divided into the following 4 groups (n = 6): control (C), OO group that received extra-virgin olive oil (7.5 mL/kg), OA group was treated with oleic acid (3.45 mL/kg), and the DPE group that received the polyphenol DPE (7.5 mg/kg). These components were administered by gavage over 30 days, twice a week. All animals were provided with food and water ad libitum The results show that olive oil was more effective than its isolated components in improving lipid profile, elevating high-density lipoprotein, and diminishing low-density lipoprotein cholesterol concentrations. Olive oil induced decreased antioxidant Mn-superoxide dismutase activity and diminished protein carbonyl concentration, indicating that olive oil may exert direct antioxidant effect on myocardium. DPE, considered as potential antioxidant, induced elevated aerobic metabolism, triacylglycerols, and lipid hydroperoxides concentrations in cardiac muscle, indicating that long-term intake of this polyphenol may induce its undesirable pro-oxidant activity on myocardium. © 2006 NRC Canada.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Ninety percent of cases of diabetes are of the slowly evolving non-insulin-dependent type, or Type 2 diabetes. Lack of exercise is regarded as one of the main causes of this disorder. In this study we analyzed the effects of physical exercise on glucose homeostasis in adult rats with type 2 diabetes induced by a neonatal injection of alloxan. Methods: Female Wistar rats aged 6 days were injected with either 250 mg/ kg of body weight of alloxan or citrate buffer 0.01 M (controls). After weaning, half of the animals in each group were subjected to physical training adjusted to meet the aerobic-anaerobic metabolic transition by swimming 1 h/day for 5 days a week with weight overloads. The necessary overload used was set and periodically readjusted for each rat through effort tests based on the maximal lactate steady state procedure. When aged 28, 60, 90, and 120 days, the rats underwent glucose tolerance tests (GTT) and their peripheral insulin sensitivity was evaluated using the HOMA index. Results: The area under the serum glucose curve obtained through GTT was always higher in alloxan-treated animals than in controls. A decrease in this area was observed in trained alloxan-treated rats at 90 and 120 days old compared with non-trained animals. At 90 days old the trained controls showed lower HOMA indices than the non-trained controls. Conclusion: Neonatal administration of alloxan induced a persistent glucose intolerance in all injected rats, which was successfully counteracted by physical training in the aerobic/anaerobic metabolic transition. © 2008 Mota et al; licensee BioMed Central Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective. The aim of this study was to verify the possibility of lactate minimum (LM) determination during a walking test and the validity of such LM protocol on predicting the maximal lactate steady-state (MLSS) intensity. Design. Eleven healthy subjects (24.2 ± 4.5 yr; 74.3 ± 7.7 kg; 176.9 ± 4.1 cm) performed LM tests on a treadmill, consisting of walking at 5.5 km h -1 and with 20-22% of inclination until voluntary exhaustion to induce metabolic acidosis. After 7 minutes of recovery the participants performed an incremental test starting at 7% incline with increments of 2% at each 3 minutes until exhaustion. A polynomial modeling approach (LMp) and a visual inspection (LMv) were used to identify the LM as the exercise intensity associated to the lowest [bLac] during the test. Participants also underwent to 24 constant intensity tests of 30 minutes to determine the MLSS intensity. Results. There were no differences among LMv (12.6 ± 1.7 %), LMp (13.1 ± 1.5 %), and MLSS (13.6 ± 2.1 %) and the Bland and Altman plots evidenced acceptable agreement between them. Conclusion. It was possible to identify the LM during walking tests with intensity imposed by treadmill inclination, and it seemed to be valid on identifying the exercise intensity associated to the MLSS. Copyright © 2012 Guilherme Morais Puga et al.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aimed to assess the effect of percutaneous transthoracic lung biopsy on the oxidative metabolism of sheep by measuring the oxidative stress markers of superoxide dismutase (SOD), total glutathione (GSH-t), peroxidase (GSH-Px) and thiobarbituric acid reactive substances (TBARS) in the red cells of these animals. Blood samples were collected from 20 clinically healthy sheep prior to, and 30 min after, percutaneous transthoracic lung biopsy. After biopsy, there was a significant decrease (p < 0.05) in SOD and GSH-Px activity, with no significant change (p ≥ 0.05) in GSH-t and TBARS concentrations. These results showed that percutaneous transthoracic lung biopsy did not significantly affect the oxidative metabolism of sheep 30 min after the procedure, which may be used widely in this species without causing serious tissue damage. © 2012. The Authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming. Larvae were incubated for 6 hours in seawater containing combinations of CO2 concentration (450 and 950 µatm) and temperature (28 and 30°C). Rates of larval oxygen consumption were higher at elevated temperatures. In contrast, high CO2 levels elicited depressed metabolic rates, especially for larvae released later in the spawning period. Rates of citrate synthase, a rate-limiting enzyme in aerobic metabolism, suggested a biochemical limit for increasing oxidative capacity in coral larvae in a warming, acidifying ocean. Biological responses were also compared between larvae released from adult colonies on the same day (cohorts). The metabolic physiology of Pocillopora damicornis larvae varied significantly by day of release. Additionally, we used environmental data collected on a reef in Moorea, French Polynesia to provide information about what adult corals and larvae may currently experience in the field. An autonomous pH sensor provided a continuous time series of pH on the natal fringing reef. In February/March, 2011, pH values averaged 8.075±0.023. Our results suggest that without adaptation or acclimatization, only a portion of naïve Pocillopora damicornis larvae may have suitable metabolic phenotypes for maintaining function and fitness in an end-of-the century ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N- (methyl)valine, MV; N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 μg CEV/1 blood; 6.7 and 6.7 μg MV/1 blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1- individuals compared to GSTT1 + persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST- individuals displayed adduct levels that were about 1/3 higher than those of GSTT1+ individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1- and GSTT1 + persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1- persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No Brasil, a contaminação do solo por derramamentos de combustíveis representa um dos mais graves problemas ambientais e o impacto da introdução de novas misturas como diesel/biodiesel na matriz energética requer investigação quanto a tecnologias apropriadas de remediação. O presente estudo teve por objetivo avaliar diferentes estratégias de biorremediação no tratamento de solo contaminado experimentalmente com óleo diesel B5. Foram conduzidos três experimentos. No primeiro, quatro microcosmos em duplicata, contendo 500 g de solo e 5% (p/p) de óleo diesel B5, todos suplementados com oxigênio através de revolvimento manual e com ajuste de umidade, tiveram como tratamentos: bioestímulo com ajuste de pH (BE1); bioestímulo com ajuste de pH e nutrientes (BE2); bioaumento com ajuste de pH, nutrientes e adição de consórcio microbiano comercial KMA (BAM) e; controle abiótico, com ajuste de pH e solo esterilizado em autoclave (PA). Paralelamente, foi conduzido tratamento por bioaumento com ajuste de pH e nutrientes, suplementação de oxigênio e consórcio KMA, em solo contaminado apenas por diesel a 5% (BAD). A população microbiana foi monitorada através da contagem de UFC e os tratamentos, avaliados pela remoção de carbono orgânico e de hidrocarbonetos de petróleo (n-alcanos C10-C36). No segundo experimento, o metabolismo microbiano aeróbio foi avaliado através da produção de CO2 em respirômetros de Bartha (triplicatas), em solo contaminado com 5% (p/p) de óleo diesel B5, ajustado para pH e umidade, nas seguintes condições: solo com adição do consórcio KMA; solo com adição de cultura microbiana obtida a partir de outro solo proveniente de um posto de combustível com histórico de vazamento de tanques (RES) e; solo esterilizado por adição de azida de sódio a 0,3% (p/p). Como controle, solo sem contaminação, com sua população microbiana autóctone. No terceiro experimento, a capacidade da microbiota autóctone (EX), assim como do consórcio KMA e da cultura RES, em biodegradar óleo diesel B5, diesel e biodiesel de soja foi testada através do uso de indicadores de oxirredução DCPIP e TTC. Os experimentos em microcosmos indicam que houve uma complementaridade metabólica entre a população nativa e o consórcio comercial de microorganismos KMA, cuja presença promoveu um decaimento mais rápido de n-alcanos nas primeiras semanas do experimento. No entanto, após 63 dias de experimento, os tratamentos BAM, BAD e BE2 apresentaram, respectivamente, em média, 92,7%, 89,4% e 81,7% de remoção dos hidrocarbonetos n-alcanos C10-C36, sendo tais diferenças, sem significância estatística. Nos respirômetros, o bioaumento com cultura microbiana RES apresentou a maior produção de CO2 e a maior remoção de hidrocarbonetos (46,2%) após 29 dias. Tanto nos ensaios em microcosmos quanto nos respirométricos, não foi possível estimar a contribuição dos processos abióticos, tendo em vista evidências da existência de atividade microbiana no solo esterilizado térmica ou quimicamente. Os ensaios com os dois indicadores redox mostraram que apenas a microbiota nativa do solo em estudo e a cultura microbiana RES apresentaram potencial para degradar óleo diesel B5, biodiesel de soja ou diesel, quando colocadas em meio mineral contendo tais combustíveis como única fonte de carbono.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are produced as a consequence of normal aerobic metabolism and are able to induce DNA oxidative damage. At the cellular level, the evaluation of the protective effect of antioxidants can be achieved by examining the integrity of the DNA nucleobases using electrochemical techniques. Herein, the use of an adenine-rich oligonucleotide (dA21) adsorbed on carbon paste electrodes for the assessment of the antioxidant capacity is proposed. The method was based on the partial damage of a DNA layer adsorbed on the electrode surface by OH• radicals generated by Fenton reaction and the subsequent electrochemical oxidation of the intact adenine bases to generate an oxidation product that was able to catalyze the oxidation of NADH. The presence of antioxidant compounds scavenged hydroxyl radicals leaving more adenines unoxidized, and thus, increasing the electrocatalytic current of NADHmeasured by differential pulse voltammetry (DPV). Using ascorbic acid (AA) as a model antioxidant species, the detection of as low as 50nMof AA in aqueous solution was possible. The protection efficiency was evaluated for several antioxidant compounds. The biosensor was applied to the determination of the total antioxidant capacity (TAC) in beverages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) composition, dissolved oxygen (DO) concentration and organic carbon loading) on PAO and GAO metabolism. The knowledge about the effect of these operational conditions on EBPR metabolism is very important, since they represent key factors that impact WWTPs performance and sustainability. Substrate competition between the anaerobic uptake of acetate and propionate (the main VFAs present in WWTPs) was shown in this work to be a relevant factor affecting PAO metabolism, and a metabolic model was developed that successfully describes this effect. Interestingly, the aerobic metabolism of PAOs was not affected by different VFA compositions, since the aerobic kinetic parameters for phosphorus uptake, polyhydroxyalkanoates (PHAs) degradation and glycogen production were relatively independent of acetate or propionate concentration. This is very relevant for WWTPs, since it will simplify the calibration procedure for metabolic models, facilitating their use for full-scale systems. The DO concentration and aerobic hydraulic retention time (HRT) affected the PAO-GAO competition, where low DO levels or lower aerobic HRT was more favourable for PAOs than GAOs. Indeed, the oxygen affinity coefficient was significantly higher for GAOs than PAOs, showing that PAOs were far superior at scavenging for the often limited oxygen levels in WWTPs. The operation of WWTPs with low aeration is of high importance for full-scale systems, since it decreases the energetic costs and can potentially improve WWTP sustainability. Extended periods of low organic carbon load, which are the most common conditions that exist in full-scale WWTPs, also had an impact on PAO and GAO activity. GAOs exhibited a substantially higher biomass decay rate as compared to PAOs under these conditions, which revealed a higher survival capacity for PAOs, representing an advantage for PAOs in EBPR processes. This superior survival capacity of PAOs under conditions more closely resembling a full-scale environment was linked with their ability to maintain a residual level of PHA reserves for longer than GAOs, providing them with an effective energy source for aerobic maintenance processes. Overall, this work shows that each of these key operational conditions play an important role in the PAO-GAO competition and should be considered in WWTP models in order to improve EBPR processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5` untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The movements, diving behaviour and thermal environment occupied by 4 adult female olive ridley turtles Lepidochelys olivacea in northern Australia were determined through satellite telemetry. Patterns of behaviour recorded were rather unusual compared to other sea turtles in that dives were mainly deep, largely benthic and exceptionally long (>2 h) in some cases, characteristics typical of over-wintering turtles in colder environments. One individual occupied shallow coastal foraging zones, while the others foraged far from land (probably on the seabed) in relatively deep water (>100 m). Individuals performed long dives (frequently >100 min), but from the short post-dive intervals we suggest that these dives were mainly aerobic. Maximum dive depth recorded was 200 ± 20 m (mean maximum depths ranged from 20.1 to 46.7 m across individuals; n = 17328 dives in total; depths ≥3 m were considered ‘dives’) and the maximum duration was 200 ± 20 min (mean durations ranged from 24.5 to 48.0 min across individuals). Temperature profiles indicate that turtles experienced temperatures ranging from 23 to 29°C at the surface, with the lowest temperature recorded (18.7°C) at a depth of 98 m. Only 6.9% of the dives were in water <20°C. From time-allocation at depth (TAD) scores, we demonstrated that many dives reaching the known or inferred sea bottom were U-shaped, but there was no apparent diel signal in dive depth. This suggests that many benthic dives were not associated exclusively with resting behaviour and likely had a foraging component as well. The ability to perform long benthic dives allows this species to exploit deeper benthic environments in addition to the shallow coastal areas more generally occupied by adult hard-shelled sea turtles (e.g. green and hawksbill turtles). Deep benthic dives also occur in certain marine mammals (e.g. narwhals) and sea birds (e.g. rockhopper penguins) and therefore seem to be a general foraging strategy exploited by animals that can perform long dives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are produced by aerobic metabolism and react with biomolecules, such as lipids, proteins and DNA. In high concentration, they lead to oxidative stress. Among ROS, singlet oxygen (1O2) is one of the main ROS involved in oxidative stress and is one of the most reactive forms of molecular oxygen. The exposure of some dyes, such as methylene blue (MB) to light (MB+VL), is able to generate 1O2 and it is the principle involved in photodynamic therapy (PDT). 1O2 e other ROS have caused toxic and carcinogenic effects and have been associated with ageing, neurodegenerative diseases and cancer. Oxidative DNA damage is mainly repaired by base excision repair (BER) pathway. However, recent studies have observed the involvement of nucleotide excision repair (NER) factors in the repair of this type of injury. One of these factors is the Xeroderma Pigmentosum Complementation Group A (XPA) protein, which acts with other proteins in DNA damage recognition and in the recruitment of other repair factors. Moreover, oxidative agents such as 1O2 can induce gene expression. In this context, this study aimed at evaluating the response of XPA-deficient cells after treatment with photosensitized MB. For this purpose, we analyzed the cell viability and occurrence of oxidative DNA damage in cells lines proficient and deficient in XPA after treatment with MB+VL, and evaluated the expression of this enzyme in proficient and complemented cells. Our results indicate an increased resistance to treatment of complemented cells and a higher level of oxidative damage in the deficient cell lines. Furthermore, the treatment was able to modulate the XPA expression up to 24 hours later. These results indicate a direct evidence for the involvement of NER enzymes in the repair of oxidative damage. Besides, a better understanding of the effects of PDT on the induction of gene expression could be provided

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the study was to determine the effect of clenbuterol on the anaerobic-threshold of horses on a tread-mill with increasing physical stress, measuring heart rate (HR) and blood levels of lactate, glucose, and insulin. Twelve Arabian horses. were submitted to two physical tests separated by a 10-day interval. Clenbuterol (CL) at 0.8 mu g/kg or saline (control-C) was administered intravenously 30 minutes, before the test. The treadmill exercise test consisted of an initial warmup followed by a gradually increasing effort. There was no statistical difference in either V-2 or V-4 (velocity at which plasma lactate concentration reached 4 and 2 mmol/L, respectively) between the two-experimental groups. For the CL group, V-200, V-180, V-160, and V-140 (velocity at which the rate heart is 140, 160, 180, and 200 beats/minute, respectively) decreased significantly. At rest as well as times 4, 6, and 10 minutes, insulin levels were higher in the group that recieved clenbuterol (P < .05). Contrary to what was expected, apparently, there was no improvement in aerobic metabolism in animals when given a therapeutic dose of the bronchodilator. The elevated heart rate observed could have been attributable to the stimulation of cardiac beta(1) adrenoceptors and the increased insulin levels to the stimulation of pancreatic beta(2) receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUÇÃO: A prática de exercício físico proporciona aumento da produção de espécies reativas de oxigênio (ERO) resultantes do metabolismo aeróbio e, gera uma quantidade significativa de calor, em conseqüência da produção de energia, resultando em sobrecarga orgânica. A associação entre ERO e exercício, e entre exercício e variações da temperatura ambiente têm sido estudadas, contudo, há escassez de informações que considere a associação entre produção de radicais livres no miocárdio e atividade física em temperatura elevada. OBJETIVO: Comparar a produção de ERO em miocárdio de ratos submetidos ao treinamento de baixa intensidade em diferentes temperaturas. MÉTODOS: Foram utilizados 20 ratos Wistar, machos, jovens, peso (250 a 280g), divididos em quatro grupos: G1 (n = 5) expostos ao treinamento e calor (39º ± 1C); G2 (n = 5) expostos somente ao calor durante o mesmo período de G1, sem treinamento; G3 (n = 5) expostos ao treinamento em temperatura ambiente (22º ± 1C); G4 (n = 5) expostos à temperatura ambiente sem treinamento. O treinamento foi realizado em esteira rolante climatizada por cinco semanas, evoluindo 5 minutos a cada duas sessões finalizando em 60 minutos em baixa intensidade 8m/min. O ambiente foi controlado entre 39 ± 1ºC e 22 ± 1ºC e entre 40 e 60 % de umidade relativa. A lipoperoxidação foi avaliada por Quimiluminescência (QL). A análise dos dados foi realizada a partir do teste Two Way ANOVA para análise da QL e t de student para a Capacidade Antioxidante Total (TRAP). RESULTADOS: A análise da QL revelou uma curva de emissão de luz significantemente mais baixa para o grupo exposto ao exercício em normotermia comparado aos sedentários mantidos no calor. A análise da TRAP mostrou diminuição em todos os grupos experimentais em relação ao G4. CONCLUSÃO: Concluiu-se que houve níveis menores de produção de ERO nos grupos submetidos somente ao calor ou somente ao exercício.