904 resultados para adrenocorticotrophin hormone
Resumo:
In dentinogenesis, certain growth factors, matrix proteoglycans, and proteins are directly or indirectly dependent on growth hormone. The hypothesis that growth hormone up-regulates the expression of enzymes, sialoproteins, and other extracellular matrix proteins implicated in the formation and mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with growth hormone over 5 days. The molar teeth were processed for immunohistochemical demonstration of bone-alkaline phosphatase, bone morphogenetic proteins-2 and -4, osteocalcin, osteopontin, bone sialoprotein, and E11 protein. Odontoblasts responded to growth hormone by more cells expressing bone morphogenetic protein, alkaline phosphatase, osteocalcin, and osteopontin. No changes were found in bone sialoprotein or E11 protein expression. Thus, growth hormone may stimulate odontoblasts to express several growth factors and matrix proteins associated with dentin matrix biosynthesis in mature rat molars.
Resumo:
Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF) cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid) contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%). We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.
Resumo:
Our understanding of the mechanisms of action of GH and its receptor, the GHR, has advanced significantly in the last decade and has provided some important surprises. It is now clear that the GH-GHR axis activates a number of inter-related signalling pathways, not all of which are dependent on the intracellular tyrosine kinase, JAK2 as originally postulated. JAK2-independent pathways, mediated via the Src family kinases, together with a number of negative regulators of GH signalling and emerging cross-talk mechanisms with other growth factor receptors, provide a complex array of mechanisms that are capable of fine-tuning responses to GH in a cell context dependent manner. Additionally, it is also now clear that GH and the GHR can translocate to the nucleus of target cells and initiate, as yet not well defined, nuclear responses. Continued emphasis on elucidation of these complex mechanisms is critical to provide further insights into the diverse physiological and pathophysiological effects of GH.
Resumo:
Stimulation of the androgen receptor via bioavailable androgens, including testosterone and testosterone metabolites, is a key driver of prostate development and the early stages of prostate cancer. Androgens are hydrophobic and as such require carrier proteins, including sex hormone-binding globulin (SHBG), to enable efficient distribution from sites of biosynthesis to target tissues. The similarly hydrophobic corticosteroids also require a carrier protein whose affinity for steroid is modulated by proteolysis. However, proteolytic mechanisms regulating the SHBG/androgen complex have not been reported. Here, we show that the cancer-associated serine proteases, kallikrein-related peptidase (KLK)4 and KLK14, bind strongly to SHBG in glutathione S-transferase interaction analyses. Further, we demonstrate that active KLK4 and KLK14 cleave human SHBG at unique sites and in an androgen-dependent manner. KLK4 separated androgen-free SHBG into its two laminin G-like (LG) domains that were subsequently proteolytically stable even after prolonged digestion, whereas a catalytically equivalent amount of KLK14 reduced SHBG to small peptide fragments over the same period. Conversely, proteolysis of 5α-dihydrotestosterone (DHT)-bound SHBG was similar for both KLKs and left the steroid binding LG4 domain intact. Characterization of this proteolysis fragment by [(3)H]-labeled DHT binding assays revealed that it retained identical affinity for androgen compared with full-length SHBG (dissociation constant = 1.92 nM). Consistent with this, both full-length SHBG and SHBG-LG4 significantly increased DHT-mediated transcriptional activity of the androgen receptor compared with DHT delivered without carrier protein. Collectively, these data provide the first evidence that SHBG is a target for proteolysis and demonstrate that a stable fragment derived from proteolysis of steroid-bound SHBG retains binding function in vitro.
Resumo:
Context: Anti-Müllerian hormone (AMH) concentration reflects ovarian aging and is argued to be a useful predictor of age at menopause (AMP). It is hypothesized that AMH falling below a critical threshold corresponds to follicle depletion, which results in menopause. With this threshold, theoretical predictions of AMP can be made. Comparisons of such predictions with observed AMP from population studies support the role for AMH as a forecaster of menopause. Objective: The objective of the study was to investigate whether previous relationships between AMH and AMP are valid using a much larger data set. Setting: AMH was measured in 27 563 women attending fertility clinics. Study Design: From these data a model of age-related AMH change was constructed using a robust regression analysis. Data on AMP from subfertile women were obtained from the population-based Prospect-European Prospective Investigation into Cancer and Nutrition (Prospect- EPIC) cohort (n � 2249). By constructing a probability distribution of age at which AMH falls below a critical threshold and fitting this to Prospect-EPIC menopausal age data using maximum likelihood, such a threshold was estimated. Main Outcome: The main outcome was conformity between observed and predicted AMP. Results: To get a distribution of AMH-predicted AMP that fit the Prospect-EPIC data, we found the critical AMH threshold should vary among women in such a way that women with low age-specific AMH would have lower thresholds, whereas women with high age-specific AMH would have higher thresholds (mean 0.075 ng/mL; interquartile range 0.038–0.15 ng/mL). Such a varying AMH threshold for menopause is a novel and biologically plausible finding. AMH became undetectable (�0.2 ng/mL) approximately 5 years before the occurrence of menopause, in line with a previous report. Conclusions: The conformity of the observed and predicted distributions of AMP supports the hypothesis that declining population averages of AMH are associated with menopause, making AMH an excellent candidate biomarker for AMP prediction. Further research will help establish the accuracy of AMH levels to predict AMP within individuals.
Resumo:
OBJECTIVE: The aim of this study was to explore women's decision-making about the balance of risks and benefits of taking hormone replacement therapy (HRT) based on the latest evidence from the Women's Health Initiative (WHI) trial of combined HRT. METHODS: Women aged 50-69 years, who were eligible for the Women's International Study of long Duration Oestrogen after Menopause (WISDOM) trial, were invited to participate in one of eight focus groups. Participants were asked to discuss their views about taking HRT based on the latest international evidence. RESULTS AND CONCLUSIONS: Eighty-two women participated overall. Qualitative content analysis was applied to the discussion transcripts. Women regarded the decisions they make about taking HRT as highly personal, and, for women currently taking HRT, the overwhelming reason for continuation was perceived improvement in quality of life regardless of either the risks or the benefits in the longer term.
Resumo:
The actual proportion of eligible people who participate in clinical trials is low. Consequently, a qualitative study of the willingness of women who are postmenopausal to participate in a long-term randomized control trial of hormone replacement therapy (HRT) designed to investigate the prevention of degenerative diseases was conducted. Focus group methodology was employed to explore the personal and social aspects of decision making about trial participation. Participants were randomly selected from the patient age-sex registers of four University of Adelaide general practices. Twenty-one women participated in four focus groups. The reasons for and against trial participation were examined using qualitative content analysis; ( n = 18) women were unwilling to participate in the trial. The lack of perceived individual benefit, minimal altruism, the risk of breast cancer and side effects, not wanting to take unnecessary medication, a ten-year commitment, and negative experiences of HRT use, were the main reasons given for not entering the trial. Of the few women ( n = 3) who clearly would enter the trial, free prescriptions and a positive history of using HRT were the main reasons for participation. The perceived disadvantages of clinical trials of HRT deter women from participating in a long-term clinical trial of HRT. An investment in education and information to eligible participants about both the risks and potential benefits of HRT may improve trial recruitment.
Resumo:
Migraine is a common neurological condition with a complex mode of inheritance. Steroid hormones have long been implicated in migraine, although their role remains unclear. Our investigation considered that genes involved in hormonal pathways may play a role in migraine susceptibility. We therefore investigated the androgen receptor (AR) CAG repeat, and the progesterone receptor (PR) PROGINS insert by cross-sectional association analysis. The results showed no association with the AR CAG repeat in our study group of 275 migraineurs and 275 unrelated controls. Results of the PR PROGINS analysis showed a significant difference in the same cohort, and in an independent follow-up study population of 300 migraineurs and 300 unrelated controls. Analysis of the genotypic risk groups of both populations together indicated that individuals who carried the PROGINS insert were 1.8 times more likely to suffer migraine. Interaction analysis of the PROGINS variant with our previously reported associated ESR1 594A variant showed that individuals who possessed at least one copy of both risk alleles were 3.2 times more likely to suffer migraine. Hence, variants of these steroid hormone receptor genes appear to act synergistically to increase the risk of migraine by a factor of three.
Resumo:
The present study examined polymorphisms of genes that might be involved in the onset of essential hypertension (HT). These included the (i) growth hormone gene (GH1), whose locus has recently been linked to elevated blood pressure (BP) in the stroke-prone SHR, although recent sib-pair analysis of a polymorphism near the human chorionic somatomammotropin gene (a member of the GH cluster) was unable to show linkage with HT; (ii) renal kallikrein gene (KLK1); and (iii) atrial natriuretic factor gene (ANF), where a primary defect in production or activity of kallikrein or ANF could cause NaCl retention and vasoconstriction. Association analyses were conducted to compare restriction fragment length polymorphisms (RFLPs) of each gene in 85 HT and 95 normotensive (NT) Caucasian subjects whose parents had a similar BP status at age ≥50 years. The frequency of the minor allele of (i) a RsaI RFLP in the promoter of GH1, amplified from leukocyte DNA by the polymerase chain reaction, was 0.15 in the HT group and 0.14 in the NT group (χ1=0.34, P=0.55); (ii) a TaqI RFLP for KLK1 was 0.035 in the HT group and 0.015 in the NT group (χ2=1.5, P=0.21); and (iii) a XhoI RFLP for ANF was 0.50 in HTs and 0.46 in NTs (χ2=0.20, P=0.65). Studies of HT pedigrees found one family in which the ANF locus and HT were not linked, owing to an obligate recombinant. The present data thus provide no evidence for involvement of the growth hormone, renal kallikrein, nor ANF gene in the causation of essential hypertension.
Resumo:
Reasons for performing the study As growth hormone increases lean body mass, it could be a therapy for obese horses. However, growth hormone use induces hyperinsulinaemia in some species, so further investigation is warranted. Objectives To investigate the effects of feeding, exercise and growth hormone therapy on basal insulin concentrations in healthy horses. Study design In vivo experimental study. Methods Blood samples were obtained every 30 min from 12 geldings over 24 h, to establish basal serum insulin concentrations, before they underwent a 3-week exercise programme. Horses were allocated into 2 groups and exercised for another 4 weeks. Group A received daily i.m. injections of recombinant equine growth hormone; 5 mg/day for 5 days, then 12.5 mg/day for 16 days. Blood samples were taken daily before feeding. Insulin vs. time area under curve of Groups A and B were compared using a Student's unpaired t test. Results Horses demonstrated insulin peaks within 2 h of feeding of 577 ± 108.3 pmol/l at 09.30 h and 342.4 ± 75.7 pmol/l at 17.30 h, despite receiving the same meal. The nadir was between midnight and 07.30 h. Exercise had no effect on basal insulin concentrations prior to equine growth hormone administrations. The equine growth hormone injections increased serum insulin concentrations (P = 0.01) within Group A, from 44.4 ± 15.3 pmol/l initially to 320.9 ± 238.2 pmol/l by Day 12. Exogenous growth hormone caused variable hyperinsulinaemia, which was alleviated once equine growth hormone administration ceased. Conclusions Single serum samples taken prior to the morning meal provide basal insulin concentrations. Exercise did not change basal insulin concentrations. However, equine growth hormone injections increased basal insulin concentrations, which were not ameliorated by exercise. Potential relevance This therapy is not recommended to address obesity in insulin-resistant equids.
Resumo:
The immune system in the female reproductive tract (FRT) does not mount an attack against HIV or other sexually transmitted infections (STI) with a single endogenously produced microbicide or with a single arm of the immune system. Instead, the body deploys dozens of innate antimicrobials to the secretions of the female reproductive tract. Working together, these antimicrobials along with mucosal antibodies attack many different viral, bacterial and fungal targets. Within the FRT, the unique challenges of protection against sexually transmitted pathogens coupled with the need to sustain the development of an allogeneic fetus have evolved in such a way that sex hormones precisely regulate immune function to accomplish both tasks. The studies presented in this review demonstrate that estradiol and progesterone secreted during the menstrual cycle act both directly and indirectly on epithelial cells and other immune cells in the reproductive tract to modify immune function in a way that is unique to specific sites throughout the FRT. As presented in this review, studies from our laboratory and others demonstrate that the innate immune response is under hormonal control, varies with the stage of the menstrual cycle, and as such is suppressed at mid-cycle to optimize conditions for successful fertilization and pregnancy. In doing so, a window of STI vulnerability is created during which potential pathogens including HIV enter the reproductive tract to infect host targets.
Resumo:
The molecular mechanisms involved in non‑small cell lung cancer tumourigenesis are largely unknown; however, recent studies have suggested that long non-coding RNAs (lncRNAs) are likely to play a role. In this study, we used public databases to identify an mRNA-like, candidate long non-coding RNA, GHSROS (GHSR opposite strand), transcribed from the antisense strand of the ghrelin receptor gene, growth hormone secretagogue receptor (GHSR). Quantitative real-time RT-PCR revealed higher expression of GHSROS in lung cancer tissue compared to adjacent, non-tumour lung tissue. In common with many long non-coding RNAs, GHSROS is 5' capped and 3' polyadenylated (mRNA-like), lacks an extensive open reading frame and harbours a transposable element. Engineered overexpression of GHSROS stimulated cell migration in the A549 and NCI-H1299 non-small cell lung cancer cell lines, but suppressed cell migration in the Beas-2B normal lung-derived bronchoepithelial cell line. This suggests that GHSROS function may be dependent on the oncogenic context. The identification of GHSROS, which is expressed in lung cancer and stimulates cell migration in lung cancer cell lines, contributes to the growing number of non-coding RNAs that play a role in the regulation of tumourigenesis and metastatic cancer progression.
Resumo:
Human parathyroid hormone (hPTH) is currently the only treatment for osteoporosis that forms new bone. Previously we described a fish equivalent, Fugu parathyroid hormone 1 (fPth1) which has hPTH-like biological activity in vitro despite fPth1(1–34) sharing only 53% identity with hPTH(1–34). Here we demonstrate the in vivo actions of fPth1(1–34) on bone. In study 1, young male rats were injected intermittently for 30 days with fPth1 [30 μg–1000 μg/kg body weight (b.w.), (30fPth1–1000fPth1)] or hPTH [30 μg–100 μg/kg b.w. (30hPTH–100hPTH)]. In proximal tibiae at low doses, the fPth1 was positively correlated with trabecular bone volume/total volume (TbBV/TV) while hPTH increased TbBV/TV, trabecular thickness (TbTh) and trabecular number (TbN). 500fPth1 and 1000fPth1 increased TbBV/TV, TbTh, TbN, mineral apposition rate (MAR) and bone formation rate/bone surface (BFR/BS) with a concomitant decrease in osteoclast surface and number. In study 2 ovariectomized (OVX), osteopenic rats and sham operated (SHAM) rats were injected intermittently with 500 μg/kg b.w. of fPth1 (500fPth1) for 11 weeks. 500fPth1 treatment resulted in increased TbBV/TV (151%) and TbTh (96%) in the proximal tibiae due to increased bone formation as assessed by BFR/BS (490%) and MAR (131%). The effect was restoration of TbBV/TV to SHAM levels without any effect on bone resorption. 500fPth1 also increased TbBV/TV and TbTh in the vertebrae (L6) and cortical thickness in the mid-femora increasing bone strength at these sites. fPth1 was similarly effective in SHAM rats. Notwithstanding the low amino acid sequence homology with hPTH (1–34), we have clearly established the efficacy of fPth1 (1–34) as an anabolic bone agent.
Resumo:
Critical phenotypic changes that occur during the progression of breast cancer include the loss of hormone-dependence, acquired resistance to systemic therapies, and increased metastatic potential. We have isolated a series of MCF-7 human breast cancer variants which exhibit hormone-independent growth, antiestrogen resistance, and increased metastatic potential. Analysis of the phenotypes of these variants strongly suggests that changes in the expression of specific genes may be critical to the generation of phenotypic diversity in the process of malignant progression in breast cancer. Epigenetic changes may contribute significantly to the generation of these phenotypic changes observed during breast cancer progression. Many of the characteristics of the progressed phenotypes appear to have arisen in response to appropriate selective pressures (growth in ovariectomized nude mice; growth in the presence of antiestrogens). These observations are consistent with the concept of clonal selection and expansion in the process of malignant progression.