986 resultados para adomians decomposition method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work provides a generalization of Mayer's energy decomposition for the density-functional theory (DFT) case. It is shown that one- and two-atom Hartree-Fock energy components in Mayer's approach can be represented as an action of a one-atom potential VA on a one-atom density ρ A or ρ B. To treat the exchange-correlation term in the DFT energy expression in a similar way, the exchange-correlation energy density per electron is expanded into a linear combination of basis functions. Calculations carried out for a number of density functionals demonstrate that the DFT and Hartree-Fock two-atom energies agree to a reasonable extent with each other. The two-atom energies for strong covalent bonds are within the range of typical bond dissociation energies and are therefore a convenient computational tool for assessment of individual bond strength in polyatomic molecules. For nonspecific nonbonding interactions, the two-atom energies are low. They can be either repulsive or slightly attractive, but the DFT results more frequently yield small attractive values compared to the Hartree-Fock case. The hydrogen bond in the water dimer is calculated to be between the strong covalent and nonbonding interactions on the energy scale

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates determinants of regional income disparity in rural Vietnam, with special emphasis placed on the roles of human capital and land. We apply a decomposition method, suggested by Oaxaca and Blinder. We found that returns to assets rather than endowments, especially those of human capital, are one of the leading factors to account for income differences across regions. We also found that substantial improvements of returns to human capital in the Red River delta region are a driving force to catch up with Mekong River delta region. Unexpectedly, differences in land endowment do not strongly correlate with regional income disparity because better access to land in a region was partially offset by lower returns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Originally presented as the author's thesis (M.S.)--University of Illinois at Urbana-Champaign, 1971.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vita.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a detailed analysis of the application of a multi-scale Hierarchical Reconstruction method for solving a family of ill-posed linear inverse problems. When the observations on the unknown quantity of interest and the observation operators are known, these inverse problems are concerned with the recovery of the unknown from its observations. Although the observation operators we consider are linear, they are inevitably ill-posed in various ways. We recall in this context the classical Tikhonov regularization method with a stabilizing function which targets the specific ill-posedness from the observation operators and preserves desired features of the unknown. Having studied the mechanism of the Tikhonov regularization, we propose a multi-scale generalization to the Tikhonov regularization method, so-called the Hierarchical Reconstruction (HR) method. First introduction of the HR method can be traced back to the Hierarchical Decomposition method in Image Processing. The HR method successively extracts information from the previous hierarchical residual to the current hierarchical term at a finer hierarchical scale. As the sum of all the hierarchical terms, the hierarchical sum from the HR method provides an reasonable approximate solution to the unknown, when the observation matrix satisfies certain conditions with specific stabilizing functions. When compared to the Tikhonov regularization method on solving the same inverse problems, the HR method is shown to be able to decrease the total number of iterations, reduce the approximation error, and offer self control of the approximation distance between the hierarchical sum and the unknown, thanks to using a ladder of finitely many hierarchical scales. We report numerical experiments supporting our claims on these advantages the HR method has over the Tikhonov regularization method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a new approach to the LU decomposition method for the simulation of stationary and ergodic random fields. The approach overcomes the size limitations of LU and is suitable for any size simulation. The proposed approach can facilitate fast updating of generated realizations with new data, when appropriate, without repeating the full simulation process. Based on a novel column partitioning of the L matrix, expressed in terms of successive conditional covariance matrices, the approach presented here demonstrates that LU simulation is equivalent to the successive solution of kriging residual estimates plus random terms. Consequently, it can be used for the LU decomposition of matrices of any size. The simulation approach is termed conditional simulation by successive residuals as at each step, a small set (group) of random variables is simulated with a LU decomposition of a matrix of updated conditional covariance of residuals. The simulated group is then used to estimate residuals without the need to solve large systems of equations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis of nanocomposite materials combining titanate nanofibers (TNF) with nanocrystalline ZnS and Bi2S3 semiconductors is described in this work. The TNF were produced via hydrothermal synthesis and sensitized with the semiconductor nanoparticles, through a single-source precursor decomposition method. ZnS and Bi2S3 nanoparticles were successfully grown onto the TNF's surface and Bi2S3-ZnS/TNF nanocomposite materials with different layouts. The samples' photocatalytic performance was first evaluated through the production of the hydroxyl radical using terephthalic acid as probe molecule. All the tested samples show photocatalytic ability for the production of this oxidizing species. Afterwards, the samples were investigated for the removal of methylene blue. The nanocomposite materials with best adsorption ability were the ZnS/TNF and Bi2S3ZnS/TNF. The dye removal was systematically studied, and the most promising results were obtained considering a sequential combination of an adsorption-photocatalytic degradation process using the Bi2S3ZnS/TNF powder as a highly adsorbent and photocatalyst material. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores - Sistemas Autónomos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Engenharia Civil – Ramo Estruturas

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O planeamento de redes de distribuição tem como objetivo assegurar a existência de capacidade nas redes para a fornecimento de energia elétrica com bons níveis de qualidade de serviço tendo em conta os fatores económicos associados. No âmbito do trabalho apresentado na presente dissertação, foi elaborado um modelo de planeamento que determina a configuração de rede resultante da minimização de custos associados a: 1) perdas por efeito de joule; 2) investimento em novos componentes; 3) energia não entregue. A incerteza associada ao valor do consumo de cada carga é modelada através de lógica difusa. O problema de otimização definido é resolvido pelo método de decomposição de benders que contempla dois trânsitos de potências ótimos (modelo DC e modelo AC) no problema mestre e escravo respectivamente para validação de restrições. Foram também definidos critérios de paragem do método de decomposição de benders. O modelo proposto classifica-se como programação não linear inteira mista e foi implementado na ferramenta de otimização General Algebraic Modeling System (GAMS). O modelo desenvolvido tem em conta todos componentes das redes para a otimização do planeamento, conforme podemos analisar nos casos de estudo implementados. Cada caso de estudo é definido pela variação da importância que cada uma das variáveis do problema toma, tendo em vista cobrir de alguma todos os cenários de operação expetáveis. Através destes casos de estudo verifica-se as várias configurações que a rede pode tomar, tendo em conta as importâncias atribuídas a cada uma das variáveis, bem como os respetivos custos associados a cada solução. Este trabalho oferece um considerável contributo no âmbito do planeamento de redes de distribuição, pois comporta diferentes variáveis para a execução do mesmo. É também um modelo bastante robusto não perdendo o ‘norte’ no encontro de solução para redes de grande dimensão, com maior número de componentes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RESUMO - Este estudo teve como objectivo contribuir para o conhecimento sobre a equidade no sector do medicamento, com uma análise empírica aplicada ao sistema de saúde português. Para o efeito avaliou-se se indivíduos com as mesmas necessidades em saúde, mas com diferentes níveis de rendimento, tiveram idêntica prestação no que diz respeito ao medicamento. Adicionalmente, aprofundou-se esta análise através da identificação de factores associados ao sistema de prestação ou ao utente que contribuíram para gerar iniquidades, com particular destaque para os comportamentos de não aquisição de medicamentos – não adesão primária. A avaliação da equidade foi efectuada através de duas abordagens distintas, mas complementares: uma sob a perspectiva da utilização e outra sob a perspectiva da distribuição da despesa pública com medicamentos. Para estas análises aplicaram-se métodos baseados nos índices de concentração, utilizando dados do Inquérito Nacional de Saúde 2005/06 e dados relativos aos encargos do Serviço Nacional de Saúde com medicamentos. Os resultados revelaram que, perante as mesmas necessidades, o sistema de prestação tende a favorecer os indivíduos de nível socioeconómico superior, quer na utilização quer na distribuição de recursos do Estado com medicamentos. Adicionalmente, a aplicação do método da decomposição do índice de concentração revelou que tanto o rendimento como o nível educacional são atributos individuais que estão associados à iniquidade na utilização de medicamentos. A iniquidade observada neste estudo pode resultar de barreiras em diferentes fases do processo terapêutico, entre as quais se destacam o não acesso à prescrição médica ou a não aquisição dos medicamentos prescritos. Foi este comportamento - designado de não adesão primária - que se analisou na segunda parte da tese. Para tal cruzaram-se os dados de prescrição electrónica com os dados de dispensa no Serviço Nacional de Saúde. Os resultados revelaram que a taxa de não adesão primária foi cerca de 20% e que este comportamento está associado ao sexo feminino ou ser jovem, assim como a características do sistema de prestação como o valor dos copagamentos. Estes dados indiciam que as barreiras na aquisição podem ser indutoras de iniquidades na utilização de medicamentos. A identificação de iniquidade na utilização de medicamentos e dos factores que contribuem para esta situação constituem o primeiro passo para uma estratégia de redução da iniquidade que, de acordo com os resultados desta tese, deve abranger não só o sistema de saúde mas também outras áreas das políticas públicas em Portugal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates vulnerability to poverty in Haiti. Research in vulnerability in developing countries has been scarce due to the high data requirements of vulnerability studies (e.g. panel or long series of cross-sections). The methodology adopted here allows the assessment of vulnerability to poverty by exploiting the short panel structure of nested data at different levels. The decomposition method reveals that vulnerability in Haiti is largely a rural phenomenon and that schooling correlates negatively with vulnerability. Most importantly, among the different shocks affecting household's income, it is found that meso-level shocks are in general far more important than covariate shocks. This finding points to some interesting policy implications in decentralizing policies to alleviate vulnerability to poverty.