985 resultados para adaptive cost


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optimal control law for a general nonlinear system can be obtained by solving Hamilton-Jacobi-Bellman equation. However, it is difficult to obtain an analytical solution of this equation even for a moderately complex system. In this paper, we propose a continuoustime single network adaptive critic scheme for nonlinear control affine systems where the optimal cost-to-go function is approximated using a parametric positive semi-definite function. Unlike earlier approaches, a continuous-time weight update law is derived from the HJB equation. The stability of the system is analysed during the evolution of weights using Lyapunov theory. The effectiveness of the scheme is demonstrated through simulation examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile ad-hoc networks (MANETs) have recently drawn significant research attention since they offer unique benefits and versatility with respect to bandwidth spatial reuse, intrinsic fault tolerance, and low-cost rapid deployment. This paper addresses the issue of delay sensitive realtime data transport in these type of networks. An effective QoS mechanism is thereby required for the speedy transport of the realtime data. QoS issue in MANET is an open-end problem. Various QoS measures are incorporated in the upperlayers of the network, but a few techniques addresses QoS techniques in the MAC layer. There are quite a few QoS techniques in the MAC layer for the infrastructure based wireless network. The goal and the challenge is to achieve a QoS delivery and a priority access to the real time traffic in adhoc wireless environment, while maintaining democracy in the resource allocation. We propose a MAC layer protocol called "FCP based FAMA protocol", which allocates the channel resources to the needy in a more democratic way, by examining the requirements, malicious behavior and genuineness of the request. We have simulated both the FAMA as well as FCP based FAMA and tested in various MANET conditions. Simulated results have clearly shown a performance improvement in the channel utilization and a decrease in the delay parameters in the later case. Our new protocol outperforms the other QoS aware MAC layer protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exascale systems of the future are predicted to have mean time between failures (MTBF) of less than one hour. Malleable applications, where the number of processors on which the applications execute can be changed during executions, can make use of their malleability to better tolerate high failure rates. We present AdFT, an adaptive fault tolerance framework for long running malleable applications to maximize application performance in the presence of failures. AdFT framework includes cost models for evaluating the benefits of various fault tolerance actions including checkpointing, live-migration and rescheduling, and runtime decisions for dynamically selecting the fault tolerance actions at different points of application execution to maximize performance. Simulations with real and synthetic failure traces show that our approach outperforms existing fault tolerance mechanisms for malleable applications yielding up to 23% improvement in application performance, and is effective even for petascale systems and beyond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With no Channel State Information (CSI) at the users, transmission over the two-user Gaussian Multiple Access Channel with fading and finite constellation at the input, will have high error rates due to multiple access interference (MAI). However, perfect CSI at the users is an unrealistic assumption in the wireless scenario, as it would involve extremely large feedback overheads. In this paper we propose a scheme which removes the adverse effect of MAI using only quantized knowledge of fade state at the transmitters such that the associated overhead is nominal. One of the users rotates its constellation relative to the other without varying the transmit power to adapt to the existing channel conditions, in order to meet certain predetermined minimum Euclidean distance requirement in the equivalent constellation at the destination. The optimal rotation scheme is described for the case when both the users use symmetric M-PSK constellations at the input, where M = 2(gimel), gimel being a positive integer. The strategy is illustrated by considering the example where both the users use QPSK signal sets at the input. The case when the users use PSK constellations of different sizes is also considered. It is shown that the proposed scheme has considerable better error performance compared to the conventional non-adaptive scheme, at the cost of a feedback overhead of just log log(2) (M-2/8 - M/4 + 2)] + 1 bits, for the M-PSK case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For transmission over the two-user Gaussian Multiple Access Channel with fading and finite constellation at the inputs, we propose a scheme which uses only quantized knowledge of fade state at users with the feedback overhead being nominal. One of the users rotates its constellation without varying the transmit power to adapt to the existing channel conditions, in order to meet certain pre-determined minimum Euclidean distance requirement in the equivalent constellation at the destination. The optimal modulation scheme has been described for the case when both the users use symmetric M-PSK constellations at the input, where M = 2λ, λ being a positive integer. The strategy has been illustrated by considering examples where both the users use QPSK signal set at the input. It is shown that the proposed scheme has considerable better error performance compared to the conventional non-adaptive scheme, at the cost of a feedback overhead of just [log2 (M2/8 - M/4 + 2)] + 1 bits, for the M-PSK case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim in this paper is to allocate the `sleep time' of the individual sensors in an intrusion detection application so that the energy consumption from the sensors is reduced, while keeping the tracking error to a minimum. We propose two novel reinforcement learning (RL) based algorithms that attempt to minimize a certain long-run average cost objective. Both our algorithms incorporate feature-based representations to handle the curse of dimensionality associated with the underlying partially-observable Markov decision process (POMDP). Further, the feature selection scheme used in our algorithms intelligently manages the energy cost and tracking cost factors, which in turn assists the search for the optimal sleeping policy. We also extend these algorithms to a setting where the intruder's mobility model is not known by incorporating a stochastic iterative scheme for estimating the mobility model. The simulation results on a synthetic 2-d network setting are encouraging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing of physiological parameters could be a cost effective approach to improving health care, and low-power sensors are essential for remote sensing because these sensors are often energy constrained. This paper presents a power optimized photoplethysmographic sensor interface to sense arterial oxygen saturation, a technique to dynamically trade off SNR for power during sensor operation, and a simple algorithm to choose when to acquire samples in photoplethysmography. A prototype of the proposed pulse oximeter built using commercial-off-the-shelf (COTS) components is tested on 10 adults. The dynamic adaptation techniques described reduce power consumption considerably compared to our reference implementation, and our approach is competitive to state-of-the-art implementations. The techniques presented in this paper may be applied to low-power sensor interface designs where acquiring samples is expensive in terms of power as epitomized by pulse oximetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Singular Value Decomposition (SVD) is a key linear algebraic operation in many scientific and engineering applications. In particular, many computational intelligence systems rely on machine learning methods involving high dimensionality datasets that have to be fast processed for real-time adaptability. In this paper we describe a practical FPGA (Field Programmable Gate Array) implementation of a SVD processor for accelerating the solution of large LSE problems. The design approach has been comprehensive, from the algorithmic refinement to the numerical analysis to the customization for an efficient hardware realization. The processing scheme rests on an adaptive vector rotation evaluator for error regularization that enhances convergence speed with no penalty on the solution accuracy. The proposed architecture, which follows a data transfer scheme, is scalable and based on the interconnection of simple rotations units, which allows for a trade-off between occupied area and processing acceleration in the final implementation. This permits the SVD processor to be implemented both on low-cost and highend FPGAs, according to the final application requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feasibility of utilising low-cost, un-cooled vertical cavity surface-emitting lasers (VCSELs) as intensity modulators in real-time optical OFDM (OOFDM) transceivers is experimentally explored, for the first time, in terms of achievable signal bit rates, physical mechanisms limiting the transceiver performance and performance robustness. End-to-end real-time transmission of 11.25 Gb/s 64-QAM-encoded OOFDM signals over simple intensity modulation and direct detection, 25 km SSMF PON systems is experimentally demonstrated with a power penalty of 0.5 dB. The low extinction ratio of the VCSEL intensity-modulated OOFDM signal is identified to be the dominant factor determining the maximum obtainable transmission performance. Experimental investigations indicate that, in addition to the enhanced transceiver performance, adaptive power loading can also significantly improve the system performance robustness to variations in VCSEL operating conditions. As a direct result, the aforementioned capacity versus reach performance is still retained over a wide VCSEL bias (driving) current (voltage) range of 4.5 mA to 9 mA (275 mVpp to 320 mVpp). This work is of great value as it demonstrates the possibility of future mass production of cost-effective OOFDM transceivers for PON applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid crystal (LC) adaptive optical elements are described, which provide an alternative to existing micropositioning technologies in optical tweezing. A full description of this work is given in [1]. An adaptive LC prism supplies tip/tilt to the phase profile of the trapping beam, giving rise to an available steering radius within the x-y plane of 10 μm. Additionally, a modally addressed adaptive LC lens provides defocus, offering a z-focal range for the trapping site of 100 μm. The result is full three-dimensional positional control of trapped particle(s) using a simple and wholly electronic control system. Compared to competing technologies, these devices provide a lower degree of controllability, but have the advantage of simplicity, cost and light efficiency. Furthermore, due to their birefringence, LC elements offer the opportunity of the creation of dual optical traps with controllable depth and separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

针对具有时变不确定性且不确定性界为椭球的线性系统提出了一种新的具有自适应机制的鲁棒保性能控制器设计方法。首先,引入一个具有可由自适应律在线调整的可调参数的目标模型,通过该参数来保证由目标模型与被控模型所获得的误差系统渐近稳定。结合保证目标模型稳定性的设计,最终形成保证闭环系统稳定且控制器增益仿射依赖于可调参数的鲁棒保性能跟踪控制器。应用于安装在试验平台上的小型直升机航向控制中,仿真试验表明了该方法的有效性。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of unicast routing is to find a path from a source to a destination. Conventional routing has been used mainly to provide connectivity. It lacks the ability to provide any kind of service guarantees and smart usage of network resources. Improving performance is possible by being aware of both traffic characteristics and current available resources. This paper surveys a range of routing solutions, which can be categorized depending on the degree of the awareness of the algorithm: (1) QoS/Constraint-based routing solutions are aware of traffic requirements of individual connection requests; (2) Traffic-aware routing solutions assume knowledge of the location of communicating ingress-egress pairs and possibly the traffic demands among them; (3) Routing solutions that are both QoS-aware as (1) and traffic-aware as (2); (4) Best-effort solutions are oblivious to both traffic and QoS requirements, but are adaptive only to current resource availability. The best performance can be achieved by having all possible knowledge so that while finding a path for an individual flow, one can make a smart choice among feasible paths to increase the chances of supporting future requests. However, this usually comes at the cost of increased complexity and decreased scalability. In this paper, we discuss such cost-performance tradeoffs by surveying proposed heuristic solutions and hybrid approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent years have witnessed a rapid growth in the demand for streaming video over the Internet and mobile networks, exposes challenges in coping with heterogeneous devices and varying network throughput. Adaptive schemes, such as scalable video coding, are an attractive solution but fare badly in the presence of packet losses. Techniques that use description-based streaming models, such as multiple description coding (MDC), are more suitable for lossy networks, and can mitigate the effects of packet loss by increasing the error resilience of the encoded stream, but with an increased transmission byte cost. In this paper, we present our adaptive scalable streaming technique adaptive layer distribution (ALD). ALD is a novel scalable media delivery technique that optimises the tradeoff between streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data are spread amongst all packets, thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the resiliency of the scalable video. The Subjective testing results illustrate that our techniques and models were able to provide levels of consistent high-quality viewing, with lower transmission cost, relative to MDC, irrespective of clip type. This highlights the benefits of selective packetisation in addition to intuitive encoding and transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a dynamic distributed load balancing algorithm for parallel, adaptive Finite Element simulations in which we use preconditioned Conjugate Gradient solvers based on domain-decomposition. The load balancing is designed to maintain good partition aspect ratio and we show that cut size is not always the appropriate measure in load balancing. Furthermore, we attempt to answer the question why the aspect ratio of partitions plays an important role for certain solvers. We define and rate different kinds of aspect ratio and present a new center-based partitioning method of calculating the initial distribution which implicitly optimizes this measure. During the adaptive simulation, the load balancer calculates a balancing flow using different versions of the diffusion algorithm and a variant of breadth first search. Elements to be migrated are chosen according to a cost function aiming at the optimization of subdomain shapes. Experimental results for Bramble's preconditioner and comparisons to state-of-the-art load balancers show the benefits of the construction.