790 resultados para active faults
Resumo:
Spannungsumlagerungen in Mineralen und Gesteinen induzieren in geologisch aktiven Bereichen mikromechanische und seismische Prozesse, wodurch eine schwache natürliche elektromagnetische Strahlung im Niederfrequenzbereich emittiert wird. Die elektromagnetischen Emissionen von nichtleitenden Mineralen sind auf dielektrische Polarisation durch mehrere physikalische Effekte zurückzuführen. Eine gerichtete mechanische Spannung führt zu einer ebenso gerichteten elektromagnetischen Emission. Die Quellen der elektromagnetischen Emissionen sind bekannt, jedoch können sie noch nicht eindeutig den verschiedenen Prozessen in der Natur zugeordnet werden, weshalb im Folgenden von einem seismo-elektromagnetischen Phänomen (SEM) gesprochen wird. Mit der neuentwickelten NPEMFE-Methode (Natural Pulsed Electromagnetic Field of Earth) können die elektromagnetischen Impulse ohne Bodenkontakt registriert werden. Bereiche der Erdkruste mit Spannungsumlagerungen (z.B. tektonisch aktive Störungen, potenzielle Hangrutschungen, Erdfälle, Bergsenkungen, Firstschläge) können als Anomalie erkannt und abgegrenzt werden. Basierend auf dem heutigen Kenntnisstand dieser Prozesse wurden Hangrutschungen und Locker- und Festgesteine, in denen Spannungsumlagerungen stattfinden, mit einem neuentwickelten Messgerät, dem "Cereskop", im Mittelgebirgsraum (Rheinland-Pfalz, Deutschland) und im alpinen Raum (Vorarlberg, Österreich, und Fürstentum Liechtenstein) erkundet und die gewonnenen Messergebnisse mit klassischen Verfahren aus Ingenieurgeologie, Geotechnik und Geophysik in Bezug gesetzt. Unter Feldbedingungen zeigte sich großenteils eine gute Übereinstimmung zwischen den mit dem "Cereskop" erkundeten Anomalien und den mit den konventionellen Verfahren erkundeten Spannungszonen. Auf Grundlage der bisherigen Kenntnis und unter Einbeziehung von Mehrdeutigkeiten werden die Messergebnisse analysiert und kritisch beurteilt.
Resumo:
The aim of this work was to show that refined analyses of background, low magnitude seismicity allow to delineate the main active faults and to accurately estimate the directions of the regional tectonic stress that characterize the Southern Apennines (Italy), a structurally complex area with high seismic potential. Thanks the presence in the area of an integrated dense and wide dynamic network, was possible to analyzed an high quality microearthquake data-set consisting of 1312 events that occurred from August 2005 to April 2011 by integrating the data recorded at 42 seismic stations of various networks. The refined seismicity location and focal mechanisms well delineate a system of NW-SE striking normal faults along the Apenninic chain and an approximately E-W oriented, strike-slip fault, transversely cutting the belt. The seismicity along the chain does not occur on a single fault but in a volume, delimited by the faults activated during the 1980 Irpinia M 6.9 earthquake, on sub-parallel predominant normal faults. Results show that the recent low magnitude earthquakes belongs to the background seismicity and they are likely generated along the major fault segments activated during the most recent earthquakes, suggesting that they are still active today thirty years after the mainshock occurrences. In this sense, this study gives a new perspective to the application of the high quality records of low magnitude background seismicity for the identification and characterization of active fault systems. The analysis of the stress tensor inversion provides two equivalent models to explain the microearthquake generation along both the NW-SE striking normal faults and the E- W oriented fault with a dominant dextral strike-slip motion, but having different geological interpretations. We suggest that the NW-SE-striking Africa-Eurasia convergence acts in the background of all these structures, playing a primary and unifying role in the seismotectonics of the whole region.
Resumo:
We use data from about 700 GPS stations in the EuroMediterranen region to investigate the present-day behavior of the the Calabrian subduction zone within the Mediterranean-scale plates kinematics and to perform local scale studies about the strain accumulation on active structures. We focus attenction on the Messina Straits and Crati Valley faults where GPS data show extentional velocity gradients of ∼3 mm/yr and ∼2 mm/yr, respectively. We use dislocation model and a non-linear constrained optimization algorithm to invert for fault geometric parameters and slip-rates and evaluate the associated uncertainties adopting a bootstrap approach. Our analysis suggest the presence of two partially locked normal faults. To investigate the impact of elastic strain contributes from other nearby active faults onto the observed velocity gradient we use a block modeling approach. Our models show that the inferred slip-rates on the two analyzed structures are strongly impacted by the assumed locking width of the Calabrian subduction thrust. In order to frame the observed local deformation features within the present- day central Mediterranean kinematics we realyze a statistical analysis testing the indipendent motion (w.r.t. the African and Eurasias plates) of the Adriatic, Cal- abrian and Sicilian blocks. Our preferred model confirms a microplate like behaviour for all the investigated blocks. Within these kinematic boundary conditions we fur- ther investigate the Calabrian Slab interface geometry using a combined approach of block modeling and χ2ν statistic. Almost no information is obtained using only the horizontal GPS velocities that prove to be a not sufficient dataset for a multi-parametric inversion approach. Trying to stronger constrain the slab geometry we estimate the predicted vertical velocities performing suites of forward models of elastic dislocations varying the fault locking depth. Comparison with the observed field suggest a maximum resolved locking depth of 25 km.
Resumo:
The integration of remote monitoring techniques at different scales is of crucial importance for monitoring of volcanoes and assessment of the associated hazard. In this optic, technological advancement and collaboration between research groups also play a key role. Vhub is a community cyberinfrastructure platform designed for collaboration in volcanology research. Within the Vhub framework, this dissertation focuses on two research themes, both representing novel applications of remotely sensed data in volcanology: advancement in the acquisition of topographic data via active techniques and application of passive multi-spectral satellite data to monitoring of vegetated volcanoes. Measuring surface deformation is a critical issue in analogue modelling of Earth science phenomena. I present a novel application of the Microsoft Kinect sensor to measurement of vertical and horizontal displacements in analogue models. Specifically, I quantified vertical displacement in a scaled analogue model of Nisyros volcano, Greece, simulating magmatic deflation and inflation and related surface deformation, and included the horizontal component to reconstruct 3D models of pit crater formation. The detection of active faults around volcanoes is of importance for seismic and volcanic hazard assessment, but not a simple task to be achieved using analogue models. I present new evidence of neotectonic deformation along a north-south trending fault from the Mt Shasta debris avalanche deposit (DAD), northern California. The fault was identified on an airborne LiDAR campaign of part of the region interested by the DAD and then confirmed in the field. High resolution LiDAR can be utilized also for geomorphological assessment of DADs, and I describe a size-distance analysis to document geomorphological aspects of hummock in the Shasta DAD. Relating the remote observations of volcanic passive degassing to conditions and impacts on the ground provides an increased understanding of volcanic degassing and how satellite-based monitoring can be used to inform hazard management strategies in nearreal time. Combining a variety of satellite-based spectral time series I aim to perform the first space-based assessment of the impacts of sulfur dioxide emissions from Turrialba volcano, Costa Rica, on vegetation in the surrounding environment, and establish whether vegetation indices could be used more broadly to detect volcanic unrest.
Resumo:
Haití, es un país claramente prioritario como receptor de cooperación para el desarrollo. Tras el terremoto del 12 de enero de 2010, se ha desarrollado un Proyecto de Cooperación Interuniversitaria entre la Universidad del Estado de Haití y la Universidad Politécnica de Madrid, financiado por la Agencia Española de Cooperación Internacional para el Desarrollo.El proyecto consiste en la formación y capacitación de los técnicos Haitianos para reconstruir su país. Se está trabajando en la creación de una escala macrosísmica Haitiana, partiendo como base de la Escala Macrosísmica Europea 1998. En este sentido, se hace un análisis exhaustivo de toda la documentación técnica y científica existente hasta la fecha sobre tipos de edificios, clases de vulnerabilidad y grados de daños dependiendo del tipo de edificio. Como caso de estudio se aplica en la ciudad de Puerto Príncipe.En primer lugar se ha clasificado el parque inmobiliario de Puerto Príncipe en diferentes tipologías constructivas, tras un trabajo de campo y teniendo en cuenta las guías de auto-construcción y reparación de edificios publicadas por el Ministerio de Obras Públicas, Transporte y Comunicaciones de Haití. (MTPTC).En el estudio de la vulnerabilidad, además del tipo de estructura de los edificios, se tiene en cuenta la habitabilidad básica que debe tener todo asentamiento humano, analizando no sólo el edificio, sino todo el entorno externo de espacios públicos, infraestructuras, dotaciones y servicios que, en conjunto,conforman el núcleo de cada población y permiten el funcionamiento eficiente del sistema de asentamientos del territorio habitado; pues, en última instancia, dicho territorio construido es el que mejor acota los riesgos ante la vulnerabilidad material y más garantiza la vida saludable de las personas. Los parámetros estudiados son: urbanísticos (anchos de vías, dimensiones de manzanas, trazado, infraestructuras,...), geológicos (estudios del efecto local e identificación de las fallas activas respecto a la edificación) y topográficos (implantación del edificio en zonas llanas, en laderas...). En último lugar, con todos estos datos y los daños registrados en el terremoto de enero de 2010, se hace una escala de intensidades macrosísmica y un plano de ordenación de la vulnerabilidad en Puerto Príncipe, que sirva de base a las autoridades haitianas para la planificación urbanística y la reconstrucción, mitigando de esta manera el riesgo símico. SUMMARY Haiti is a clear priority country as a recipient of development cooperation. After the earthquake of January 12, 2010, an Inter-University Cooperation Project has been developed between the State University of Haiti and the Polytechnic University of Madrid, funded by the Spanish Agency for International Development.The project consists of training and qualifying Haitian technicians to rebuild their country. We are currently working on the creation of a Haitian Macroseismic Scale,based on the European Macroseismic Scale 1998.For the accomplishment of this goal, a comprehensive (deep) analysis is being held, going through all the scientific and technical documentation to date, related to building types, kinds of vulnerability and degrees/ levels of damage depending on the type of building. As a case study, this has been applied to the city of Port-au-Prince.First of all, we have classified the housing typology of Port-au-Prince in different construction types, after carrying on field work in this area and keeping in mind the guidelines for self-construction and repairment of buildings published by the Ministry of Work, Transport and Communications of Haiti. (MTPTC).Regarding the study of vulnerability, besides the type of structure of the buildings, we take into account the basic habitability every human settlement should have, analyzing not only the building, but all the external environment of public spaces,infrastructures, amenities and services, which, as a whole, shape the core of each population and allow the efficient functioning of the settlement system on the inhabited territory. It is this territory,ultimately, the one that better narrows the risks when facing material vulnerability and that better ensures a healthy life for people. The studied parameters are: urban (lane width, block dimensions, layout, infrastructure...), geological (studies focusing on local effects and identification of the active faults in relation to the building) and topographical (implementation of the building on flat areas, slopes...)Finally, with all this data (information) and the registered damages related to the earthquake occurred in 2010, we create a Macroseismic Intensity Scale and a Management Plan of the vulnerability in Port-au-Prince. They will serve as a guideline for Haitians authorities in the urban planning and reconstruction, thus reducing seismic risk.
Resumo:
En el presente trabajo se desarrolla una metodología para caracterizar fallas activas como fuentes sísmicas independientes en combinación con zonas sismogenéticas tipo área de cara a la estimación probabilista poissoniana de la peligrosidad sísmica. Esta metodología está basada en el reparto de la tasa de momento sísmico registrada en una región entre las fuentes potencialmente activas subyacentes (fallas activas modelizadas de forma independiente y una zonificación sismogenética), haciendo especial hincapié en regiones de sismicidad moderada y fallas de lento movimiento. Se desarrolla una aplicación de la metodología en el sureste de España, incorporando al cálculo 106 fuentes sísmicas independientes: 95 de tipo falla (catalogadas como fallas activas en la base de datos QAFI) y 11 zonas sismogenéticas de tipo área. Del mismo modo, se estima la peligrosidad sísmica con el método clásico zonificado y se comparan los resultados, analizando la influencia de la inclusión de las fallas de forma independiente en la estimación de la peligrosidad. Por último, se desarrolla una aplicación de la metodología propuesta en la estimación de la peligrosidad sísmica considerando un modelo temporal no poissoniano. La aplicación se centra en la falla de Carboneras, mostrando la repercusión que puede tener este cambio de modelo temporal en la estimación final de la peligrosidad. ABSTRACT A new methodology of seismic source characterization to be included in poissonian, probabilistic seismic hazard assessments, is developed in this work. Active faults are considered as independent seismogenic sources in combination with seismogenic area sources. This methodology is based in the distribution of the seismic moment rate recorded in a region between the potentially active underlying seismic sources that it contains (active faults modeled independently and an area-source seismic model), with special emphasis on regions with moderate seismicity and faults with slow deformation rates. An application of the methodology is carried out in the southeastern part of Spain, incorporating 106 independent seismic sources in the computations: 95 of fault type (catalogued as active faults in the Quaternary Active Fault Database, QAFI) and 11 of area-source type. At the same time, the seismic hazard is estimated following the classical area-source method. The results obtained using both methodologies (the classical one and the one proposed in this work9 are compared, analyzing the influence of the inclusion of faults as independent sources in hazard estimates. Finally, an application of the proposed methodology considering a non-poissonian time model is shown. This application is carried out in the Carboneras fault and shows the repercussion that this change of time model has in the final hazard estimates.
Resumo:
The development of this Master's Thesis is aimed at modeling active for estimating seismic hazard in Haití failures. It has been used zoned probabilistic method, both classical and hybrid, considering the incorporation of active faults as independent units in the calculation of seismic hazard. In this case, the rate of seismic moment is divided between the failures and the area seismogenetic same region. Failures included in this study are the Septentrional, Matheux and Enriquillo fault. We compared the results obtained by both methods to determine the importance of considering the faults in the calculation. In the first instance, updating the seismic catalog, homogenization, completeness analysis and purification was necessary to obtain a catalog ready to proceed to the estimation of the hazard. With the seismogenic zoning defined in previous studies and the updated seismic catalog, they are obtained relations Gutenberg-Richter recurrence of seismicity, superficial and deep in each area. Selected attenuation models were those used in (Benito et al., 2011), as the tectonic area of study is very similar to that of Central America. Its implementation has been through the development of a logical in which each branch is multiplied by an index based on the relevance of each combination of models. Results are presented as seismic hazard maps for return periods of 475, 975 and 2475 years, and spectral acceleration (SA) in structural periods: 0.1 - 0.2 - 0.5 - 1.0 and 2.0 seconds, and the difference accelerations between maps obtained by the classical method and the hybrid method. Maps realize the importance of including faults as separate items in the calculation of the hazard. The morphology of the zoned maps presented higher values in the area where the superficial and deep zone overlap. In the results it can determine that the minimum values in the zoned approach they outweigh the hybrid method, especially in areas where there are no faults. Higher values correspond to those obtained in fault zones by the hybrid method understanding that the contribution of the faults in this method is very important with high values. The maximum value of PGA obtained is close to Septentrional in 963gal, near to 460 gal in Matheux, and the Enriquillo fault line value reaches 760gal PGA in the Eastern segment and Western 730gal in the segment. This compares with that obtained in the zoned approach in this area where the value of PGA obtained was 240gal. These values are compared with those obtained by Frankel et al., (2011) with those have much similarity in values and morphology, in contrast to those presented by Benito et al., (2012) and the Standard Seismic Dominican Republic
Resumo:
Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.
Resumo:
As unidades estratigráficas que resultaram da evolução do rio Tejo em Portugal, aqui analisadas em pormenor entre Vila Velha de Ródão e Chamusca, possuem distintas características sedimentares e indústrias líticas: uma unidade culminante do enchimento sedimentar (o ancestral Tejo, antes do início da etapa de incisão fluvial) - SLD13 (+142 a 262 m acima do leito actual; com provável idade 3,6 a 1,8 Ma), sem indústrias identificadas; terraço T1 (+76 a 180 m; ca. 1000? a 900 ka), sem indústrias; terraço T2 (+57 a 150 m; idade estimada em ca. 600 ka), sem indústrias; terraço T3 (+36 a 113 m; ca. 460 a 360? ka), sem indústrias; terraço T4 (+26 a 55 m; ca. 335 a 155 ka), Paleolítico Inferior (Acheulense) em níveis da base e intermédios mas Paleolítico Médio inicial em níveis do topo; terraço T5 (+5 a 34 m; 135 a 73 ka), Paleolítico Médio (com talhe Mustierense, Levallois); terraço T6 (+3 a 14 m; 62 a 32 ka), Paleolítico Médio final (Mustierense final); Areias da Carregueira (areias eólicas) e coluviões (+3 a ca. 100 m; 32 a 12 ka), Paleolítico Superior a Epipaleolítico; enchimento da planície aluvial (+0 a 8 m; ca. 12 ka a actual), Mesolítico e indústrias mais recentes. As diferenças na elevação (a.r.b.) das escadarias de terraços resultam de soerguimento diferencial, devido a falhas ativas. Numa dada escadaria datada, a projeção da elevação da superfície de cada terraço (a.r.b.) versus a sua idade permitiu estimar a idade do topo do terraço T2 (ca. 600 ka) e a provável idade do início da etapa de incisão (ca. 1,8 Ma). Obteve-se a duração da fase de agradação dos terraços baixos e médios: T6 – 30 ka; T5 – 62 ka; T4 – ca. 180 ka; T3 – ca. 100? ka. Conclui-se que durante o Plistocénico médio e final, as fases de incisão e alargamento do vale foram curtas (ca. 11-25 ka) e ocorreram durante períodos de nível do mar muito baixo, alternando com mais longas fases de inundação e agradação do vale durante níveis do mar mais altos. Estas oscilações eustáticas de causa climática estão sobrepostas a um contexto de soerguimento de longo termo, controlando o desenvolvimento das escadarias. Calculou-se que para os últimos ca. 155 ka as taxas de incisão de curto-termo apresentam valores (0,09 a 0,41 m/ka), aproximadamente, duplos dos calculados para o intervalo ca. 155 a 900 ka (0,04 a 0,28 m/ka). Este aumento na taxa de incisão deve estar relacionado com um aumento na taxa de soerguimento por intensificação da compressão devido à convergência entre as placas Africana e Eurasiática. Abstract: The terrace staircases of the Lower Tagus River (Ródão to Chamusca) – characterization and interpretation of the sedimentary, tectonic, climatic and Palaeolithic data The stratigraphic units that record the evolution of the Tagus River in Portugal (study area between Vila Velha de Ródão and Chamusca villages) have different sedimentary characteristics and lithic industries: a culminant sedimentary unit (the ancestral Tagus, before the drainage network entrenchment) – SLD13 (+142 to 262 m above river bed – a.r.b.; with probable age 3.6 to 1.8 Ma), without artefacts; T1 terrace (+76 to 180 m; ca. 1000? to 900 ka), without artefacts; T2 terrace (+57 to 150 m; top deposits with a probable age ca. 600 ka), without artefacts; T3 terrace (+36 to 113 m; ca. 460 to 360? ka), without artefacts; T4 terrace (+26 to 55 m; ca. 335 a 155 ka), Lower Paleolithic (Acheulian) at basal and middle levels but early Middle Paleolithic at top levels; T5 terrace (+5 to 34 m; 135 to 73 ka), Middle Paleolithic (Mousterian; Levallois technique); T6 terrace (+3 to 14 m; 62 to 32 ka), late Middle Paleolithic (late Mousterian); Carregueira Sands (aeolian sands) and colluvium (+3 a ca. 100 m; 32 to 12 ka), Upper Paleolithic to Epipaleolithic; alluvial plain (+0 to 8 m; ca. 12 ka to present), Mesolithic and more recent industries. The differences in elevation (a.r.b.) of the several terrace staircases results from differential uplift due to active faults. The age interval for each aggradation phase of T3 to T6 terraces was obtained: T3 – ca. 100? ka; T4 – ca. 180 ka; T5 – 62 ka; T6 – 30 ka. The intervals of river down-cutting and widening of the valley floor were short (ca. 11-25 ka) and coincided with periods of very low sea-level. The plotting of the elevation (a.r.b.) versus the age of each terrace surface allows to estimate the age of the T2 terrace (ca. 600 ka) and the probable age of the beginning of the incision stage (ca. 1.8 Ma). So, the high amplitude sea-level changes that characterized the Middle and Late Pleistocene strongly determined the episodic down-cutting phases of the river during the low stands sea levels that alternated with the flooding and aggradation phases of the incised valley during highstand sea levels. These climate related eustatic oscillations are superimposed onto a long term uplift pattern, controlling the river terrace staircase development. During the last ca. 155 ka, the short-term incision rates (0.09 a 0.41 m/ka) were twice the values determined for the interval 155 to 900 ka (0.04 to 0.28 m/ka). This increase in incision rate should be related with an increase in uplift rate resulting from an intensification of compression due to the convergence between African - Eurasian plates.
Resumo:
NEW DATA ON THE CHRONOLOGY OF THE VALE DO FORNO SEDIMENTARY SEQUENCE (LOWER TAGUS RIVER TERRACE STAIRCASE) AND ITS RELEVANCE AS FLUVIAL ARCHIVE OF THE MIDDLE PLEISTOCENE IN WESTERN IBERIA Pedro P. Cunha 1, António A. Martins 2, Jan-Pieter Buylaert 3,4, Andrew S. Murray 4, Luis Raposo 5, Paolo Mozzi 6, Martin Stokes 7 1 MARE - Marine and Environmental Sciences Centre, Department of Earth Sciences, University of Coimbra, Portugal: pcunha@dct.uc.pt 2 MARE - Marine and Environmental Sciences Centre, Dep. Geociências, University of Évora, Portugal; aam@uevora.pt 3 Centre for Nuclear Technologies, Technical University of Denmark, Risø Campus, Denmark; jabu@dtu.dk 4 Nordic Laboratory for Luminescence Dating, Aarhus University, Risø DTU, Denmark; anmu@dtu.dk 5 Museu Nacional de Arqueologia, Lisboa, Portugal; 3raposos@sapo.pt 6 Department of Geosciences, University of Padova, Italy; paolo.mozzi@unipd.it 7 School of Geography, Earth and Environmental Sciences, University of Plymouth, UK; m.stokes@plymouth.ac.uk The stratigraphic units that record the evolution of the Tagus River in Portugal (study area between Vila Velha de Ródão and Porto Alto villages; Fig. 1) have different sedimentary characteristics and lithic industries (Cunha et al., 2012): - a culminant sedimentary unit (the ancestral Tagus, before the drainage network entrenchment) – SLD13 (+142 to 262 m above river bed – a.r.b.; with probable age ca. 3,6 to 1,8 Ma), without artefacts; - T1 terrace (+84 to 180 m; ca. 1000? to 900 ka), without artefacts; - T2 terrace (+57 to 150 m; top deposits with a probable age ca. 600 ka), without artefacts; - T3 terrace (+43 to 113 m; ca. 460 to 360? ka), without artefacts; - T4 terrace (+26 to 55 m; ca. 335 a 155 ka), Lower Paleolithic (Acheulian) at basal and middle levels but early Middle Paleolithic at top levels; - T5 terrace (+5 to 34 m; 135 to 73 ka), Middle Paleolithic (Mousterian; Levallois technique); - T6 terrace (+3 to 14 m; 62 to 32 ka), late Middle Paleolithic (late Mousterian); - Carregueira Sands (aeolian sands) and colluvium (+3 a ca. 100 m; 32 to 12 ka), Upper Paleolithic to Epipaleolithic; - alluvial plain (+0 to 8 m; ca. 12 ka to present), Mesolithic and more recent industries. The differences in elevation (a.r.b.) of the several terrace staircases results from differential uplift due to active faults. Longitudinal correlation with the terrace levels indicates that a graded profile ca. 200 km long was achieved during terrace formation periods and a strong control by sea base level was determinant for terrace formation. The Neogene sedimentary units constituted the main source of sediments for the fluvial terraces (Fig. 2). Geomorphological mapping, coupled with lithostratigraphy, sedimentology and luminescence dating (quartz-OSL and K-feldspar post-IRIR290) were used in this study focused on the T4 terrace, which comprises a Lower Gravels (LG) unit and an Upper Sand (US) unit. The thick, coarse and dominantly massive gravels of the LG unit indicate deposition by a coarse bed-load braided river, with strong sediment supply, high gradient and fluvial competence, during conditions of rapidly rising sea level. Luminescence dating only provided minimum ages but it is probable that the LG unit corresponds to the earlier part of the MIS9 (ca. 335 to 325 ka), immediately postdating the incision promoted by the very low sea level (reaching ca. -140 m) during MIS10 (362 to 337 ka), a period of relatively cold climate conditions with weak vegetation cover on slopes and low sea level. Fig. 1. Main Portuguese reaches in which the Tagus River can be divided (Lower Tagus Basin): I – from the Spanish border to Arneiro (a general E–W trend, mainly consisting of polygonal segments); II – from Arneiro to Gavião (NE–SW); III – from Gavião to Arripiado (E–W); IV – from Arripiado to Vila Franca de Xira (NNE-SSW); V – from Vila Franca de Xira to the Atlantic shoreline. The faults considered to be the limit of the referred fluvial sectors are: F1 – Ponsul-Arneiro fault (WSW-ENE); F2 – Gavião fault (NW-SE); F3 – Ortiga fault (NW-SE); F4 – Vila Nova da Barquinha fault (W-E); F5 – Arripiado-Chamusca fault (NNE-SSW). 1 – estuary; 2 – terraces; 3 – faults; 4 – Tagus main channel. The main Iberian drainage basins are also represented (inset). The lower and middle parts of the US unit, comprising an alternation of clayish silts with paleosols and minor sands to the east (flood-plain deposits) and sand deposits to the west (channel belt), have a probable age of ca. 325 to 200 ka. This points to formation during MIS9 to MIS7, under conditions of high to medium sea levels and warm to mild conditions. The upper part of the US unit, dominated by sand facies and with OSL ages of ca. 200 to 154 ka, correlates with the early part of the MIS6. During this period, progradation resulted from climate deterioration and relative depletion of vegetation that promoted enhanced sediment production in the catchment, coupled with initiation of sea-level lowering that increased the longitudinal slope. The Vale do Forno and Vale da Atela archaeological sites (Alpiarça, central Portugal) document the earliest human occupation in the Lower Tagus River, well established in geomorphological and environmental terms, within the Middle Pleistocene. The Lower Palaeolithic sites were found on the T4 terrace (+26 m, a.r.b.). The oldest artefacts previously found in the LG unit, display crude bifacial forms that can be attributed to the Acheulian, with a probable age of ca. 335 to 325 ka. The T4 US unit has archaeological sites stratigraphically documenting successive phases of an evolved Acheulian, that probably date ca. 325 to 300 ka. Notably, these Lower Palaeolithic artisans were able to produce tools with different sophistication levels, simply by applying different strategies: more elaborated reduction sequences in case of bifaces and simple reduction sequences to obtain cleavers. Fig. 2. . Simplified geologic map of the Lower Tagus Cenozoic basin, adapted from the Carta Geológica de Portugal, 1/500000, 1992). The study area (comprising the Vale do Forno and Vale de Atela sites) is located on the more upstream sector of the Lower Tagus River reach IV, between Arripiado and Chamusca villages. 1 – alluvium (Holocene); 2 – terraces (Pleistocene); 3 – sands, silts and gravels (Paleogene to Pliocene); 4 – Sintra Massif (Cretaceous); 5 – limestones, marls, silts and sandstones (Mesozoic); 6 – quartzites (Ordovician); 7 – basement (Proterozoic to Palaeozoic); 8 – main fault. The main Portuguese reaches of the Tagus River are identified (I to V). The VF3 site (Milharós), containing a Final Acheulian industry, with fine and elaborated bifaces) found in a stratigraphic level located between the T4 terrace deposits and a colluvium associated with Late Pleistocene aeolian sands (32 to 12 ka), has an age younger than ca. 154 ka but much older than 32 ka. In the study area, the sedimentary units of the T4 terrace seem to record the river response to sea-level changes and climatically-driven fluctuations in sediment supply. REFERENCES Cunha P. P., Almeida N. A. C., Aubry T., Martins A. A., Murray A. S., Buylaert J.-P., Sohbati R., Raposo L., Rocha L., 2012, Records of human occupation from Pleistocene river terrace and aeolian sediments in the Arneiro depression (Lower Tejo River, central eastern Portugal). Geomorphology, vol. 165-166, pp. 78-90.
Resumo:
The Bajo Segura fault zone (BSFZ) is the northern terminal splay of the Eastern Betic shear zone (EBSZ), a large left-lateral strike-slip fault system of sigmoid geometry stretching more than 450 km from Alicante to Almería. The BSFZ extends from the onshore Bajo Segura basin further into the Mediterranean Sea and shows a moderate instrumental seismic activity characterized by small earthquakes. Nevertheless, the zone was affected by large historical earthquakes of which the largest was the 1829 Torrevieja earthquake (IEMS98 X). The onshore area of the BSFZ is marked by active transpressive structures (faults and folds), whereas the offshore area has been scarcely explored from the tectonic point of view. During the EVENT-SHELF cruise, a total of 10 high-resolution single-channel seismic sparker profiles were obtained along and across the offshore Bajo Segura basin. Analysis of these profiles resulted in (a) the identification of 6 Quaternary seismo-stratigraphic units bounded by five horizons corresponding to regional erosional surfaces related to global sea level lowstands; and (b) the mapping of the active sub-seafloor structures and their correlation with those described onshore. Moreover, the results suggest that the Bajo Segura blind thrust fault or the Torrevieja left-lateral strike-slip fault, with prolongation offshore, could be considered as the source of the 1829 Torrevieja earthquake. These data improve our understanding of present deformation along the BSFZ and provide new insights into the seismic hazard in the area.
Resumo:
We present an overview of the knowledge of the structure and the seismic behavior of the Alhama de Murcia Fault (AMF). We utilize a fault traces map created from a LIDAR DEM combined with the geodynamic setting, the analysis of the morphology, the distribution of seismicity, the geological information from E 1:50000 geological maps and the available paleoseismic data to describe the recent activity of the AMF. We discuss the importance of uncertainties regarding the structure and kinematics of the AMF applied to the interpretation and spatial correlation of the paleoseismic data. In particular, we discuss the nature of the faults dipping to the SE (antithetic to the main faults of the AMF) in several segments that have been studied in the previous paleoseismic works. A special chapter is dedicated to the analysis of the tectonic source of the Lorca 2011 earthquake that took place in between two large segments of the fault.
Resumo:
Building facilities have become important infrastructures for modern productive plants dedicated to services. In this context, the control systems of intelligent buildings have evolved while their reliability has evidently improved. However, the occurrence of faults is inevitable in systems conceived, constructed and operated by humans. Thus, a practical alternative approach is found to be very useful to reduce the consequences of faults. Yet, only few publications address intelligent building modeling processes that take into consideration the occurrence of faults and how to manage their consequences. In the light of the foregoing, a procedure is proposed for the modeling of intelligent building control systems, considersing their functional specifications in normal operation and in the of the event of faults. The proposed procedure adopts the concepts of discrete event systems and holons, and explores Petri nets and their extensions so as to represent the structure and operation of control systems for intelligent buildings under normal and abnormal situations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Northern Apennines (NA) chain is the expression of the active plate margin between Europe and Adria. Given the low convergence rates and the moderate seismic activity, ambiguities still occur in defining a seismotectonic framework and many different scenarios have been proposed for the mountain front evolution. Differently from older models that indicate the mountain front as an active thrust at the surface, a recently proposed scenario describes the latter as the frontal limb of a long-wavelength fold (> 150 km) formed by a thrust fault tipped around 17 km at depth, and considered as the active subduction boundary. East of Bologna, this frontal limb is remarkably very straight and its surface is riddled with small, but pervasive high- angle normal faults. However, west of Bologna, some recesses are visible along strike of the mountain front: these perturbations seem due to the presence of shorter wavelength (15 to 25 km along strike) structures showing both NE and NW-vergence. The Pleistocene activity of these structures was already suggested, but not quantitative reconstructions are available in literature. This research investigates the tectonic geomorphology of the NA mountain front with the specific aim to quantify active deformations and infer possible deep causes of both short- and long-wavelength structures. This study documents the presence of a network of active extensional faults, in the foothills south and east of Bologna. For these structures, the strain rate has been measured to find a constant throw-to-length relationship and the slip rates have been compared with measured rates of erosion. Fluvial geomorphology and quantitative analysis of the topography document in detail the active tectonics of two growing domal structures (Castelvetro - Vignola foothills and the Ghiardo plateau) embedded in the mountain front west of Bologna. Here, tilting and river incision rates (interpreted as that long-term uplift rates) have been measured respectively at the mountain front and in the Enza and Panaro valleys, using a well defined stratigraphy of Pleistocene to Holocene river terraces and alluvial fan deposits as growth strata, and seismic reflection profiles relationships. The geometry and uplift rates of the anticlines constrain a simple trishear fault propagation folding model that inverts for blind thrust ramp depth, dip, and slip. Topographic swath profiles and the steepness index of river longitudinal profiles that traverse the anti- clines are consistent with stratigraphy, structures, aquifer geometry, and seismic reflection profiles. Available focal mechanisms of earthquakes with magnitude between Mw 4.1 to 5.4, obtained from a dataset of the instrumental seismicity for the last 30 years, evidence a clear vertical separation at around 15 km between shallow extensional and deeper compressional hypocenters along the mountain front and adjacent foothills. In summary, the studied anticlines appear to grow at rates slower than the growing rate of the longer- wavelength structure that defines the mountain front of the NA. The domal structures show evidences of NW-verging deformation and reactivations of older (late Neogene) thrusts. The reconstructed river incision rates together with rates coming from several other rivers along a 250 km wide stretch of the NA mountain front and recently available in the literature, all indicate a general increase from Middle to Late Pleistocene. This suggests focusing of deformation along a deep structure, as confirmed by the deep compressional seismicity. The maximum rate is however not constant along the mountain front, but varies from 0.2 mm/yr in the west to more than 2.2 mm/yr in the eastern sector, suggesting a similar (eastward-increasing) trend of the apenninic subduction.
Fault detection, diagnosis and active fault tolerant control for a satellite attitude control system
Resumo:
Modern control systems are becoming more and more complex and control algorithms more and more sophisticated. Consequently, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC) have gained central importance over the past decades, due to the increasing requirements of availability, cost efficiency, reliability and operating safety. This thesis deals with the FDD and FTC problems in a spacecraft Attitude Determination and Control System (ADCS). Firstly, the detailed nonlinear models of the spacecraft attitude dynamics and kinematics are described, along with the dynamic models of the actuators and main external disturbance sources. The considered ADCS is composed of an array of four redundant reaction wheels. A set of sensors provides satellite angular velocity, attitude and flywheel spin rate information. Then, general overviews of the Fault Detection and Isolation (FDI), Fault Estimation (FE) and Fault Tolerant Control (FTC) problems are presented, and the design and implementation of a novel diagnosis system is described. The system consists of a FDI module composed of properly organized model-based residual filters, exploiting the available input and output information for the detection and localization of an occurred fault. A proper fault mapping procedure and the nonlinear geometric approach are exploited to design residual filters explicitly decoupled from the external aerodynamic disturbance and sensitive to specific sets of faults. The subsequent use of suitable adaptive FE algorithms, based on the exploitation of radial basis function neural networks, allows to obtain accurate fault estimations. Finally, this estimation is actively exploited in a FTC scheme to achieve a suitable fault accommodation and guarantee the desired control performances. A standard sliding mode controller is implemented for attitude stabilization and control. Several simulation results are given to highlight the performances of the overall designed system in case of different types of faults affecting the ADCS actuators and sensors.