993 resultados para active contour
Resumo:
Thesis (Ph.D.)--University of Washington, 2015
Resumo:
Segmentation of medical imagery is a challenging problem due to the complexity of the images, as well as to the absence of models of the anatomy that fully capture the possible deformations in each structure. Brain tissue is a particularly complex structure, and its segmentation is an important step for studies in temporal change detection of morphology, as well as for 3D visualization in surgical planning. In this paper, we present a method for segmentation of brain tissue from magnetic resonance images that is a combination of three existing techniques from the Computer Vision literature: EM segmentation, binary morphology, and active contour models. Each of these techniques has been customized for the problem of brain tissue segmentation in a way that the resultant method is more robust than its components. Finally, we present the results of a parallel implementation of this method on IBM's supercomputer Power Visualization System for a database of 20 brain scans each with 256x256x124 voxels and validate those against segmentations generated by neuroanatomy experts.
Resumo:
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X data to detect flooded regions in urban areas is described. An important application for this would be the calibration and validation of the flood extent predicted by an urban flood inundation model. To date, research on such models has been hampered by lack of suitable distributed validation data. The study uses a 3m resolution TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with airborne LiDAR data to estimate regions of the TerraSAR-X image in which water would not be visible due to radar shadow or layover caused by buildings and taller vegetation, and these regions were masked out in the flood detection process. A semi-automatic algorithm for the detection of floodwater was developed, based on a hybrid approach. Flooding in rural areas adjacent to the urban areas was detected using an active contour model (snake) region-growing algorithm seeded using the un-flooded river channel network, which was applied to the TerraSAR-X image fused with the LiDAR DTM to ensure the smooth variation of heights along the reach. A simpler region-growing approach was used in the urban areas, which was initialized using knowledge of the flood waterline in the rural areas. Seed pixels having low backscatter were identified in the urban areas using supervised classification based on training areas for water taken from the rural flood, and non-water taken from the higher urban areas. Seed pixels were required to have heights less than a spatially-varying height threshold determined from nearby rural waterline heights. Seed pixels were clustered into urban flood regions based on their close proximity, rather than requiring that all pixels in the region should have low backscatter. This approach was taken because it appeared that urban water backscatter values were corrupted in some pixels, perhaps due to contributions from side-lobes of strong reflectors nearby. The TerraSAR-X urban flood extent was validated using the flood extent visible in the aerial photos. It turned out that 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. These findings indicate that TerraSAR-X is capable of providing useful data for the calibration and validation of urban flood inundation models.
Resumo:
The performance of flood inundation models is often assessed using satellite observed data; however these data have inherent uncertainty. In this study we assess the impact of this uncertainty when calibrating a flood inundation model (LISFLOOD-FP) for a flood event in December 2006 on the River Dee, North Wales, UK. The flood extent is delineated from an ERS-2 SAR image of the event using an active contour model (snake), and water levels at the flood margin calculated through intersection of the shoreline vector with LiDAR topographic data. Gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. Residuals between the satellite observed data points and those from the reference line are spatially clustered into groups of similar values. We show that model calibration achieved using pattern matching of observed and predicted flood extent is negatively influenced by this spatial dependency in the data. By contrast, model calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. To test the impact of removing spatial dependency a new method of evaluating flood inundation model performance is developed by using multiple random subsamples of the water surface elevation data points. By testing for spatial dependency using Moran’s I, multiple subsamples of water elevations that have no significant spatial dependency are selected. The model is then calibrated against these data and the results averaged. This gives a near identical result to calibration using spatially dependent data, but has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Moreover, by using the variations found in the subsamples of the observed data it is possible to assess the effects of observational uncertainty on the assessment of flooding risk.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Clinical assessments after Total Knee Arthroplasty (TKA) show persisting pain after implantation in over 20% of patients. Impingement of soft tissue around the knee, due to imprecise geometry of the tibial implant, can be one reason for persisting ailment. Two hundred and thirty seven MRI scans were evaluated using an active contour detection algorithm (snake) to obtain a high-resolution mean anatomical shape of the tibial plateau. Differences between female and male, older and younger (
Resumo:
We propose a level set based variational approach that incorporates shape priors into edge-based and region-based models. The evolution of the active contour depends on local and global information. It has been implemented using an efficient narrow band technique. For each boundary pixel we calculate its dynamic according to its gray level, the neighborhood and geometric properties established by training shapes. We also propose a criterion for shape aligning based on affine transformation using an image normalization procedure. Finally, we illustrate the benefits of the our approach on the liver segmentation from CT images.
Resumo:
El presente trabajo describe una nueva metodología para la detección automática del espacio glotal de imágenes laríngeas tomadas a partir de 15 vídeos grabados por el servicio ORL del hospital Gregorio Marañón de Madrid con luz estroboscópica. El sistema desarrollado está basado en el modelo de contornos activos (snake). El algoritmo combina en el pre-procesado, algunas técnicas tradicionales (umbralización y filtro de mediana) con técnicas más sofisticadas tales como filtrado anisotrópico. De esta forma, se obtiene una imagen apropiada para el uso de las snakes. El valor escogido para el umbral es del 85% del pico máximo del histograma de la imagen; sobre este valor la información de los píxeles no es relevante. El filtro anisotrópico permite distinguir dos niveles de intensidad, uno es el fondo y el otro es la glotis. La inicialización se basa en obtener el módulo del campo GVF; de esta manera se asegura un proceso automático para la selección del contorno inicial. El rendimiento del algoritmo se valida usando los coeficientes de Pratt y se compara contra una segmentación realizada manualmente y otro método automático basado en la transformada de watershed. SUMMARY: The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images taken from 15 videos recorded by the ENT service of the Gregorio Marañon Hospital in Madrid with videostroboscopic equipment. The system is based on active contour models (snakes). The algorithm combines for the pre-processing, some traditional techniques (thresholding and median filter) with more sophisticated techniques such as anisotropic filtering. In this way, we obtain an appropriate image for the use of snake. The value selected for the threshold is 85% of the maximum peak of the image histogram; over this point the information of the pixels is not relevant. The anisotropic filter permits to distinguish two intensity levels, one is the background and the other one is the glottis. The initialization is based on the obtained magnitude by GVF field; in this manner an automatic process for the initial contour selection will be assured. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation and another automatic method based on the watershed transformation.
Resumo:
The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images based on active contour models (snakes). In order to obtain an appropriate image for the use of snakes based techniques, the proposed algorithm combines a pre-processing stage including some traditional techniques (thresholding and median filter) with more sophisticated ones such as anisotropic filtering. The value selected for the thresholding was fixed to the 85% of the maximum peak of the image histogram, and the anisotropic filter permits to distinguish two intensity levels, one corresponding to the background and the other one to the foreground (glottis). The initialization carried out is based on the magnitude obtained using the Gradient Vector Flow field, ensuring an automatic process for the selection of the initial contour. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation. The results obtained suggest that this method provided results comparable with other techniques such as the proposed in (Osma-Ruiz et al., 2008).
Resumo:
The Elliptical Scanning Algorithm is an effective method to individually detect and label the projected rings. It consecutively defines an elliptical annulus of one pixel wide which grows pixel by pixel and sweeps the image, from centre to periphery, until it detects and labels each whole ring. In a way, it works like a snake-annealing algorithm. Active contour models (snakes) are energy-minimising curves that deform to fit image features. Elliptical Scanning Algorithm changes its geometry in order to label reflected rings.
Resumo:
In the presence of ATP, recA protein forms a presynaptic complex with single-stranded DNA that is an obligatory intermediate in homologous pairing. Presynaptic complexes of recA protein and circular single strands that are active in forming joint molecules can be isolated by gel filtration. These isolated active complexes are nucleoprotein filaments with the following characteristics: (i) a contour length that is at least 1.5 times that of the corresponding duplex DNA molecule, (ii) an ordered structure visualized by negative staining as a striated filament with a repeat distance of 9.0 nm and a width of 9.3 nm, (iii) approximately 8 molecules of recA protein and 20 nucleotide residues per striation. The widened spacing between bases in the nucleoprotein filament means that the initial matching of complementary sequences must involve intertwining of the filament and duplex DNA, unwinding of the latter, or some combination of both to equalize the spacing between nascent base pairs. These experiments support the concept that recA protein first forms a filament with single-stranded DNA, which in turn binds to duplex DNA to mediate both homologous pairing and subsequent strand exchange.