906 resultados para accuracy of estimation
Resumo:
Radiation therapy (RT) plays currently significant role in curative treatments of several cancers. External beam RT is carried out mostly by using megavoltage beams of linear accelerators. Tumor eradication and normal tissue complications correlate to dose absorbed in tissues. Normally this dependence is steep and it is crucial that actual dose within patient accurately correspond to the planned dose. All factors in a RT procedure contain uncertainties requiring strict quality assurance. From hospital physicist´s point of a view, technical quality control (QC), dose calculations and methods for verification of correct treatment location are the most important subjects. Most important factor in technical QC is the verification that radiation production of an accelerator, called output, is within narrow acceptable limits. The output measurements are carried out according to a locally chosen dosimetric QC program defining measurement time interval and action levels. Dose calculation algorithms need to be configured for the accelerators by using measured beam data. The uncertainty of such data sets limits for best achievable calculation accuracy. All these dosimetric measurements require good experience, are workful, take up resources needed for treatments and are prone to several random and systematic sources of errors. Appropriate verification of treatment location is more important in intensity modulated radiation therapy (IMRT) than in conventional RT. This is due to steep dose gradients produced within or close to healthy tissues locating only a few millimetres from the targeted volume. The thesis was concentrated in investigation of the quality of dosimetric measurements, the efficacy of dosimetric QC programs, the verification of measured beam data and the effect of positional errors on the dose received by the major salivary glands in head and neck IMRT. A method was developed for the estimation of the effect of the use of different dosimetric QC programs on the overall uncertainty of dose. Data were provided to facilitate the choice of a sufficient QC program. The method takes into account local output stability and reproducibility of the dosimetric QC measurements. A method based on the model fitting of the results of the QC measurements was proposed for the estimation of both of these factors. The reduction of random measurement errors and optimization of QC procedure were also investigated. A method and suggestions were presented for these purposes. The accuracy of beam data was evaluated in Finnish RT centres. Sufficient accuracy level was estimated for the beam data. A method based on the use of reference beam data was developed for the QC of beam data. Dosimetric and geometric accuracy requirements were evaluated for head and neck IMRT when function of the major salivary glands is intended to be spared. These criteria are based on the dose response obtained for the glands. Random measurement errors could be reduced enabling lowering of action levels and prolongation of measurement time interval from 1 month to even 6 months simultaneously maintaining dose accuracy. The combined effect of the proposed methods, suggestions and criteria was found to facilitate the avoidance of maximal dose errors of up to even about 8 %. In addition, their use may make the strictest recommended overall dose accuracy level of 3 % (1SD) achievable.
Resumo:
[EN] The objective of this study was to determine whether a short training program, using real foods, would decreased their portion-size estimation errors after training. 90 student volunteers (20.18±0.44 y old) of the University of the Basque Country (Spain) were trained in observational techniques and tested in food-weight estimation during and after a 3-hour training period. The program included 57 commonly consumed foods that represent a variety of forms (125 different shapes). Estimates of food weight were compared with actual weights. Effectiveness of training was determined by examining change in the absolute percentage error for all observers and over all foods over time. Data were analyzed using SPSS vs. 13.0. The portion-size errors decreased after training for most of the foods. Additionally, the accuracy of their estimates clearly varies by food group and forms. Amorphous was the food type estimated least accurately both before and after training. Our findings suggest that future dietitians can be trained to estimate quantities by direct observation across a wide range of foods. However this training may have been too brief for participants to fully assimilate the application.
Resumo:
Approximate Bayesian computation (ABC) is a highly flexible technique that allows the estimation of parameters under demographic models that are too complex to be handled by full-likelihood methods. We assess the utility of this method to estimate the parameters of range expansion in a two-dimensional stepping-stone model, using samples from either a single deme or multiple demes. A minor modification to the ABC procedure is introduced, which leads to an improvement in the accuracy of estimation. The method is then used to estimate the expansion time and migration rates for five natural common vole populations in Switzerland typed for a sex-linked marker and a nuclear marker. Estimates based on both markers suggest that expansion occurred < 10,000 years ago, after the most recent glaciation, and that migration rates are strongly male biased.
Resumo:
Radar refractivity retrievals have the potential to accurately capture near-surface humidity fields from the phase change of ground clutter returns. In practice, phase changes are very noisy and the required smoothing will diminish large radial phase change gradients, leading to severe underestimates of large refractivity changes (ΔN). To mitigate this, the mean refractivity change over the field (ΔNfield) must be subtracted prior to smoothing. However, both observations and simulations indicate that highly correlated returns (e.g., when single targets straddle neighboring gates) result in underestimates of ΔNfield when pulse-pair processing is used. This may contribute to reported differences of up to 30 N units between surface observations and retrievals. This effect can be avoided if ΔNfield is estimated using a linear least squares fit to azimuthally averaged phase changes. Nevertheless, subsequent smoothing of the phase changes will still tend to diminish the all-important spatial perturbations in retrieved refractivity relative to ΔNfield; an iterative estimation approach may be required. The uncertainty in the target location within the range gate leads to additional phase noise proportional to ΔN, pulse length, and radar frequency. The use of short pulse lengths is recommended, not only to reduce this noise but to increase both the maximum detectable refractivity change and the number of suitable targets. Retrievals of refractivity fields must allow for large ΔN relative to an earlier reference field. This should be achievable for short pulses at S band, but phase noise due to target motion may prevent this at C band, while at X band even the retrieval of ΔN over shorter periods may at times be impossible.
Resumo:
Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely large. To address this concern, we proposed a random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) for GWAS. The RMLM simply treats the SNP-effect as random, but it allows a modified Bonferroni correction to be used to calculate the threshold p value for significance tests. The MRMLM is a multi-locus model including markers selected from the RMLM method with a less stringent selection criterion. Due to the multi-locus nature, no multiple test correction is needed. Simulation studies show that the MRMLM is more powerful in QTN detection and more accurate in QTN effect estimation than the RMLM, which in turn is more powerful and accurate than the EMMA. To demonstrate the new methods, we analyzed six flowering time related traits in Arabidopsis thaliana and detected more genes than previous reported using the EMMA. Therefore, the MRMLM provides an alternative for multi-locus GWAS.
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
In evaluating the accuracy of diagnosis tests, it is common to apply two imperfect tests jointly or sequentially to a study population. In a recent meta-analysis of the accuracy of microsatellite instability testing (MSI) and traditional mutation analysis (MUT) in predicting germline mutations of the mismatch repair (MMR) genes, a Bayesian approach (Chen, Watson, and Parmigiani 2005) was proposed to handle missing data resulting from partial testing and the lack of a gold standard. In this paper, we demonstrate an improved estimation of the sensitivities and specificities of MSI and MUT by using a nonlinear mixed model and a Bayesian hierarchical model, both of which account for the heterogeneity across studies through study-specific random effects. The methods can be used to estimate the accuracy of two imperfect diagnostic tests in other meta-analyses when the prevalence of disease, the sensitivities and/or the specificities of diagnostic tests are heterogeneous among studies. Furthermore, simulation studies have demonstrated the importance of carefully selecting appropriate random effects on the estimation of diagnostic accuracy measurements in this scenario.
Resumo:
A frequent applied method in career assessment to elicit clients’ self-concepts is asking them to predict their interest assessment results. Accuracy in estimating one’s interesttype is commonly taken as a sign of more self-awareness and career choice readiness. The study evaluated the empirical relation of accuracy of self-estimation to career choice readiness within a sample of 350 Swiss secondary students in seventh grade. Overall, accuracy showed only weak relations to career choice readiness. However, accurately estimating one’s first interest-type in a three-letter RIASEC interests-code emerged as a sign of more vocational identity and total career choice readiness. Accuracy also correlated positively with interest profile consistency, differentiation, and congruence to career aspirations. Implications of the results for career counseling and assessment practice are presented.
Resumo:
The applicability of a portable NIR spectrometer for estimating the °Brix content of grapes by non-destructive measurement has been analysed in field. The NIR spectrometer AOTF-NIR Luminar 5030, from Brimrose, was used. The spectrometer worked with a spectral range from 1100 to 2300 nm. A total of 600 samples of Cabernet Sauvignon grapes, belonging to two vintages, were measured in a non-destructive way. The specific objective of this research is to analyse the influence of the statistical treatment of the spectra information in the development of °Brix estimation models. Different data pretreatments have been tested before applying multivariate analysis techniques to generate estimation models. The calibration using PLS regression applied to spectra data pretreated with the MSC method (multiplicative scatter correction) has been the procedure with better results. Considering the models developed with data corresponding to the first campaign, errors near to 1.35 °Brix for calibration (SEC = 1.36) and, about 1.50 °Brix for validation (SECV = 1.52) were obtained. The coefficients of determination were R2 = 0.78 for the calibration, and R2 = 0.77 for the validation. In addition, the great variability in the data of the °Brix content for the tested plots was analysed. The variation of °Brix on the plots was up to 4 °Brix, for all varieties. This deviation was always superior to the calculated errors in the generated models. Therefore, the generated models can be considered to be valid for its application in field. Models were validated with data corresponding to the second campaign. In this sense, the validation results were worse than those obtained in the first campaign. It is possible to conclude in the need to realize an adjustment of the spectrometer for each season, and to develop specific predictive models for every vineyard.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
OBJECTIVE: To compare, in patients with cancer and in healthy subjects, measured resting energy expenditure (REE) from traditional indirect calorimetry to a new portable device (MedGem) and predicted REE. DESIGN: Cross-sectional clinical validation study. SETTING: Private radiation oncology centre, Brisbane, Australia. SUBJECTS: Cancer patients (n = 18) and healthy subjects (n = 17) aged 37-86 y, with body mass indices ranging from 18 to 42 kg/m(2). INTERVENTIONS: Oxygen consumption (VO(2)) and REE were measured by VMax229 (VM) and MedGem (MG) indirect calorimeters in random order after a 12-h fast and 30-min rest. REE was also calculated from the MG without adjustment for nitrogen excretion (MGN) and estimated from Harris-Benedict prediction equations. Data were analysed using the Bland and Altman approach, based on a clinically acceptable difference between methods of 5%. RESULTS: The mean bias (MGN-VM) was 10% and limits of agreement were -42 to 21% for cancer patients; mean bias -5% with limits of -45 to 35% for healthy subjects. Less than half of the cancer patients (n = 7, 46.7%) and only a third (n = 5, 33.3%) of healthy subjects had measured REE by MGN within clinically acceptable limits of VM. Predicted REE showed a mean bias (HB-VM) of -5% for cancer patients and 4% for healthy subjects, with limits of agreement of -30 to 20% and -27 to 34%, respectively. CONCLUSIONS: Limits of agreement for the MG and Harris Benedict equations compared to traditional indirect calorimetry were similar but wide, indicating poor clinical accuracy for determining the REE of individual cancer patients and healthy subjects.