901 resultados para accelerated fermentation
Resumo:
At our regional University low socioeconomic status (SES) campus, enrolled nurses can enter into the second year of a Bachelor of Nursing. These students, hence, have their first year experience while entering directly into the degree’s second year. A third of these students withdrew from our Bioscience units, and left the University. In an attempt to improve student retention and success, we introduced a strategy involving (i) review lectures in each of the Bioscience disciplines, and subsequently, (ii) “Getting started”, a formative website activity of basic Bioscience concepts, (iii) an ‘O’-week workshop addressing study skills and online resources, and (iv) online tutor support. In addition to being well received, the introduction of the review lectures and full intervention was associated with a significant reduction in student attrition. This successful approach could be used in other low SES areas with accelerated programs for Nursing and may have application beyond this discipline.
Resumo:
A strategy initiated in 2010 to support and improve the retention rate of diverse cohorts of accelerated nursing students at two QUT campuses continued to be successful in 2012. An additional procedure involving the formation of learning communities was trialled in 2012 to address the social dimension of learning and assist in enhancing the quality of accelerated nurse’s first year university experience. A supported formative assessment activity was planned to allow the students to collaborate in learning communities.
Resumo:
An eBook to support accelerated nursing students is being developed at QUT. The first component of this is a formative activity comprising key bioscience and pharmacology concepts and self-help quizzes. This initiative has been reviewed favourably by the students. The eBook will also cover requisite academic skills and revision bioscience material.
Resumo:
The use of graphical processing unit (GPU) parallel processing is becoming a part of mainstream statistical practice. The reliance of Bayesian statistics on Markov Chain Monte Carlo (MCMC) methods makes the applicability of parallel processing not immediately obvious. It is illustrated that there are substantial gains in improved computational time for MCMC and other methods of evaluation by computing the likelihood using GPU parallel processing. Examples use data from the Global Terrorism Database to model terrorist activity in Colombia from 2000 through 2010 and a likelihood based on the explicit convolution of two negative-binomial processes. Results show decreases in computational time by a factor of over 200. Factors influencing these improvements and guidelines for programming parallel implementations of the likelihood are discussed.
Resumo:
We learn from the past that invasive species have caused tremendous damage to native species and serious disruption to agricultural industries. It is crucial for us to prevent this in the future. The first step of this process is to identify correctly an invasive species from native ones. Current identification methods, relying on mainly 2D images, can result in low accuracy and be time consuming. Such methods provide little help to a quarantine officer who has time constraints to response when on duty. To deal with this problem, we propose new solutions using 3D virtual models of insects. We explain how working with insects in the 3D domain can be much better than the 2D domain. We also describe how to create true-color 3D models of insects using an image-based 3D reconstruction method. This method is ideal for quarantine control and inspection tasks that involve the verification of a physical specimen against known invasive species. Finally we show that these insect models provide valuable material for other applications such as research, education, arts and entertainment. © 2013 IEEE.
Resumo:
BACKGROUND The increasing cost of fossil fuels as well as the escalating social and industrial awareness of the environmental impacts associated with the use of fossil fuels has created the need for more sustainable fuel options. Bioethanol, produced from renewable biomass such as sugar and starch materials, is believed to be one of these options, and it is currently being harnessed extensively. However, the utilization of sugar and starch materials as feedstocks for bioethanol production creates a major competition with the food market in terms of land for cultivation, and this makes bioethanol from these sources economically less attractive. RESULT This study explores the suitability of microalgae (Chlorococum sp.) as a substrate for bioethanol production via yeast (Saccharomycesbayanus)under different fermentation conditions. Results show a maximum ethanol concentration of 3.83 g L -1 obtained from 10 g L-1 of lipid-extracted microalgae debris. CONCLUSION This productivity level (∼38% w/w), which is in keeping with that of current production systems endorses microalgae as a promising substrate for bioethanol production.
Resumo:
The recognition of the potential efficacy of plasmid DNA (pDNA) molecules as vectors in the treatment and prevention of emerging diseases has birthed the confidence to combat global pandemics. This is due to the close-to-zero safety concern associated with pDNA vectors compared to viral vectors in cell transfection and targeting. Considerable attention has been paid to the potential of pDNA vectors but comparatively less thought has been given to the practical challenges in producing large quantities to meet current rising demands. A pilot-scale fermentation scheme was developed by employing a stoichiometrically-designed growth medium whose exceptional plasmid yield performance was attested in a shake flask environment for pUC19 and pEGFP-N1 transformed into E. coliDH5α and E. coliJM109, respectively. Batch fermentation of E. coliDH5α-pUC19 employing the stoichiometric medium displayed a maximum plasmid volumetric and specific yield of 62.6 mg/L and 17.1 mg/g (mg plasmid/g dry cell weight), respectively. Fed-batch fermentation of E. coliDH5α-pUC19 on a glycerol substrate demonstrated one of the highest ever reported pilot-scale plasmid specific yield of 48.98 mg/g and a volumetric yield of 0.53 g/L. The attainment of high plasmid specific yields constitutes a decrease in plasmid manufacturing cost and enhances the effectiveness of downstream processes by reducing the proportion of intracellular impurities. The effect of step-rise temperature induction was also considered to maximize ColE1-origin plasmid replication.
Resumo:
In order to protect our planet and ourselves from the adverse effects of excessive CO2 emissions and to prevent an imminent non-renewable fossil fuel shortage and energy crisis, there is a need to transform our current ‘fossil fuel dependent’ energy systems to new, clean, renewable energy sources. The world has recognized hydrogen as an energy carrier that complies with all the environmental quality and energy security, demands. This research aimed at producing hydrogen through anaerobic fermentation, using food waste as the substrate. Four food waste substrates were used: Rice, fish, vegetable and their mixture. Bio-hydrogen production was performed in lab scale reactors, using 250 mL serum bottles. The food waste was first mixed with the anaerobic sewage sludge and incubated at 37°C for 31 days (acclimatization). The anaerobic sewage sludge was then heat treated at 80°C for 15 min. The experiment was conducted at an initial pH of 5.5 and temperatures of 27, 35 and 55°C. The maximum cumulative hydrogen produced by rice, fish, vegetable and mixed food waste substrates were highest at 37°C (Rice =26.97±0.76 mL, fish = 89.70±1.25 mL, vegetable = 42.00±1.76 mL, mixed = 108.90±1.42 mL). A comparative study of acclimatized (the different food waste substrates were mixed with anaerobic sewage sludge and incubated at 37°C for 31days) and non-acclimatized food waste substrate (food waste that was not incubated with anaerobic sewage sludge) showed that acclimatized food waste substrate enhanced bio-hydrogen production by 90 - 100%.
Resumo:
Background Despite the widely recognised importance of sustainable health care systems, health services research remains generally underfunded in Australia. The Australian Centre for Health Services Innovation (AusHSI) is funding health services research in the state of Queensland. AusHSI has developed a streamlined protocol for applying and awarding funding using a short proposal and accelerated peer review. Method An observational study of proposals for four health services research funding rounds from May 2012 to November 2013. A short proposal of less than 1,200 words was submitted using a secure web-based portal. The primary outcome measures are: time spent preparing proposals; a simplified scoring of grant proposals (reject, revise or accept for interview) by a scientific review committee; and progressing from submission to funding outcomes within eight weeks. Proposals outside of health services research were deemed ineligible. Results There were 228 eligible proposals across 4 funding rounds: from 29% to 79% were shortlisted and 9% to 32% were accepted for interview. Success rates increased from 6% (in 2012) to 16% (in 2013) of eligible proposals. Applicants were notified of the outcomes within two weeks from the interview; which was a maximum of eight weeks after the submission deadline. Applicants spent 7 days on average preparing their proposal. Applicants with a ranking of reject or revise received written feedback and suggested improvements for their proposals, and resubmissions composed one third of the 2013 rounds. Conclusions The AusHSI funding scheme is a streamlined application process that has simplified the process of allocating health services research funding for both applicants and peer reviewers. The AusHSI process has minimised the time from submission to notification of funding outcomes.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
This thesis synthesises advancements made in the method of assessment of emergency patients with possible acute cardiac disease and has defined new assessment strategies that supports the safe early discharge of patients at low risk for acute coronary syndromes. These important findings have informed clinicians and health services about improvements that can be made at this current time in the process of care of ED patients, and the studies have had local, national and international influence.