904 resultados para abutment screw
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: This study aimed to evaluate the survival probability of four narrow-diameter implant systems when subjected to fatigue loading. Materials and Methods: Seventy-two narrow-diameter implants to be restored with single-unit crowns were divided into four groups (n = 18): Astra Tech (3.5-mm diameter), with a standard connection (ASC); BioHorizon (3.4-mm diameter), with a standard connection (BSC); Intra-Lock (3.4-mm diameter), with a standard multilobular connection (ISC); and Intra-Lock (3.4-diameter), with a modified square connection (IMC). The corresponding abutments were screwed onto the implants, and standardized metal crowns (maxillary central incisors) were cemented and subjected to step-stress accelerated life testing in water. Use-level probability Weibull curves and reliability for 100,000 cycles at 150 and 200 N (90% two-sided confidence intervals) were calculated. Polarized light and scanning electron microscopes were used to access the failure modes. Results: The calculated survival probability for 100,000 cycles at 150 N was approximately 93% in group ASC, 98% in group BSC, 94% in group ISC, and 99% in group IMC. At 200 N, the survival rate was estimated to be approximately < 0.1% for ASC, 77% for BSC, 34% for ISC, and 93% for IMC. Abutment screw fracture was the main failure mode for all groups. Conclusions: Although the probability of survival was not significantly different among systems at a load of 150 N, a significant decrease was observed at 200 N for all groups except IMC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: The aim of this study was to assess the contributions of some prosthetic parameters such as crown-to-implant (C/I) ratio, retention system, restorative material, and occlusal loading on stress concentrations within a single posterior crown supported by a short implant. Materials and Methods: Computer-aided design software was used to create 32 finite element models of an atrophic posterior partially edentulous mandible with a single external-hexagon implant (5 mm wide × 7 mm long) in the first molar region. Finite element analysis software with a convergence analysis of 5% to mesh refinement was used to evaluate the effects of C/I ratio (1:1; 1.5:1; 2:1, or 2.5:1), prosthetic retention system (cemented or screwed), and restorative material (metal-ceramic or all ceramic). The crowns were loaded with simulated normal or traumatic occlusal forces. The maximum principal stress (σmax) for cortical and cancellous bone and von Mises stress (σvM) for the implant and abutment screw were computed and analyzed. The percent contribution of each variable to the stress concentration was calculated from the sum of squares analysis. Results: Traumatic occlusion and a high C/I ratio increased stress concentrations. The C/I ratio was responsible for 11.45% of the total stress in the cortical bone, whereas occlusal loading contributed 70.92% to the total stress in the implant. The retention system contributed 0.91% of the total stress in the cortical bone. The restorative material was responsible for only 0.09% of the total stress in the cancellous bone. Conclusion: Occlusal loading was the most important stress concentration factor in the finite element model of a single posterior crown supported by a short implant.
Resumo:
Purpose: This study compared the maintenance of tightening torque in different retention screw types of implant-supported crowns. Materials and Methods: Twelve metallic crowns in UCLA abutments cast with cobalt-chromium alloy were attached to external hexagon osseointegrated implants with different retention screws: group A: titanium alloy retention screw; group B: gold alloy retention screw with gold coating; group C: titanium alloy retention screw with diamond-like carbon film coating; and group D: titanium alloy retention screw with aluminum titanium nitride coating. Three detorque measurements were obtained after torque insertion in each replica. Data were evaluated by analysis of variance (ANOVA), Tukey's test (P < 0.05), and t test (P < 0.05). Results: Detorque value reduced in all groups (P < 0.05). Group A retained the highest percentage of torque in comparison with the other groups (P < 0.05). Groups B and D retained the lowest percentage of torque without statistically significant difference between them (P < 0.05). Conclusions: All screw types exhibited reduction in the detorque value. The titanium screw maintained the highest percentage of torque whereas the gold-coated screw and the titanium screw with aluminum titanium nitride coating retained the lowest percentage. (Implant Dent 2012;21:46-50)
Resumo:
Objectives: The aim of this study was to evaluate the variation in removal torque of implant prosthetic abutment screws after successive tightening and loosening cycles, in addition to evaluating the influence of the hexagon at the abutment base on screw removal torque. Material and methods: Twenty hexagonal abutments were tightened to 20 regular external hex implants with a titanium alloy screw, with an insertion torque of 32 N cm, measured with a digital torque gauge. The implant/abutment/screw assemblies were divided into two groups: ( 1) abutments without hexagon at the base and ( 2) abutments with a hexagon at the base. Each assembly received a provisional restoration and was submitted to mechanical loading cycles. After this, the screws were removed and the removal torque was measured. This sequence was repeated 10 times, then the screw was replaced by a new one, and another cycle was performed. Linear regression analysis was performed. Results: Removal torque values tended to decrease as the number of insertion/removal cycles increased, for both groups. Comparisons of the slopes and the intercepts between groups showed no statistical difference. There was no significant difference between the mean values of last five cycles and the 11th cycle. Within the limitations of this in vitro study, it was concluded that ( 1) repeated insertion/removal cycles promoted gradual reduction in removal torque of screws, ( 2) replacing the screw with a new one after 10 cycles did not increase resistance to loosening, and ( 3) removal of the hexagon from the abutment base had no effect on the removal torque of the screws.
Resumo:
Purpose: A recent in vivo study has shown considerable contamination of internal implant and suprastructure components with great biodiversity, indicating bacterial leakage along the implant-abutment interface, abutment-prosthesis interface, and restorative margins. The goal of the present study was to compare microbiologically the peri-implant sulcus to these internal components on implants with no clinical signs of peri-implantitis and in function for many years. Checkerboard DNA-DNA hybridization was used to identify and quantify 40 species. Material and Methods: Fifty-eight turned titanium Brånemark implants in eight systemically healthy patients (seven women, one man) under regular supportive care were examined. All implants had been placed in the maxilla and loaded with a screw-retained full-arch bridge for an average of 9.6 years. Gingival fluid samples were collected from the deepest sulcus per implant for microbiological analysis. As all fixed restorations were removed, the cotton pellet enclosed in the intra-coronal compartment and the abutment screw were retrieved and microbiologically evaluated. Results: The pellet enclosed in the suprastructure was very similar to the peri-implant sulcus in terms of bacterial detection frequencies and levels for practically all the species included in the panel. Yet, there was virtually no microbial link between these compartments. When comparing the abutment screw to the peri-implant sulcus, the majority of the species were less frequently found, and in lower numbers at the former. However, a relevant link in counts for a lot of bacteria was described between these compartments. Even though all implants in the present study showed no clinical signs of peri-implantitis, the high prevalence of numerous species associated with pathology was striking. Conclusions: Intra-coronal compartments of screw-retained fixed restorations were heavily contaminated. The restorative margin may have been the principal pathway for bacterial leakage. Contamination of abutment screws most likely occurred from the peri-implant sulcus via the implant-abutment interface and abutment-prosthesis interface.
Resumo:
This case series reports on the use of nonsilica-based high-strength full ceramics for different prosthetic indications. Fifty-two consecutive patients received tooth- or implant-supported zirconia reconstructions during a 2-year period. The observation period for reexamination was 12 to 30 months. The most frequent indications were single crowns and short-span fixed partial dentures. A few implant superstructures were screw-retained, whereas all remaining restorations were cemented on natural teeth or zirconia implant abutments. Clinical examination included biologic (probing depths, bleeding on probing) and esthetic (Papilla Index) parameters, as well as technical complications. No implant was lost or caused any problems, but two teeth were lost after horizontal fracture. Overall, the periodontal parameters were favorable. Fractures of frameworks or implant abutments were not observed. Abutment-screw loosening occurred once for one premolar single crown. Furthermore, five implant crowns in the posterior region exhibited chipping of the porcelain veneering material. With regard to esthetics, no reconstructions were considered unacceptable, but three crowns were remade shortly after delivery. In this short-term study, it was observed that biologic, esthetic, and mechanical properties of zirconia were favorable, and the material could be used in various prosthetic indications on teeth or implants.
Resumo:
OBJECTIVES: The objective of this systematic review was to assess the 5-year survival rates and incidences of complications associated with ceramic abutments and to compare them with those of metal abutments. METHODS: An electronic Medline search complemented by manual searching was conducted to identify randomized-controlled clinical trials, and prospective and retrospective studies providing information on ceramic and metal abutments with a mean follow-up time of at least 3 years. Patients had to have been examined clinically at the follow-up visit. Assessment of the identified studies and data abstraction was performed independently by three reviewers. Failure rates were analyzed using standard and random-effects Poisson regression models to obtain summary estimates of 5-year survival proportions. RESULTS: Twenty-nine clinical and 22 laboratory studies were selected from an initial yield of 7136 titles and data were extracted. The estimated 5-year survival rate of ceramic abutments was 99.1% [95% confidence interval (CI): 93.8-99.9%] and 97.4% (95% CI: 96-98.3%) for metal abutments. The estimated cumulative incidence of technical complications after 5 years was 6.9% (95% CI: 3.5-13.4%) for ceramic abutments and 15.9% (95% CI: 11.6-21.5%) for metal abutments. Abutment screw loosening was the most frequent technical problem, occurring at an estimated cumulative incidence after 5 years of 5.1% (95% CI: 3.3-7.7%). All-ceramic crowns supported by ceramic abutments exhibited similar annual fracture rates as metal-ceramic crowns supported by metal abutments. The cumulative incidence of biological complications after 5 years was estimated at 5.2% (95% CI: 0.4-52%) for ceramic and 7.7% (95% CI: 4.7-12.5%) for metal abutments. Esthetic complications tended to be more frequent at metal abutments. A meta-analysis of the laboratory data was impossible due to the non-standardized test methods of the studies included. CONCLUSION: The 5-year survival rates estimated from annual failure rates appeared to be similar for ceramic and metal abutments. The information included in this review did not provide evidence for differences of the technical and biological outcomes of ceramic and metal abutments. However, the information for ceramic abutments was limited in the number of studies and abutments analyzed as well as the accrued follow-up time. Standardized methods for the analysis of abutment strength are needed.