941 resultados para absorption of CO2
Resumo:
The present paper addresses two major concerns that were identified when developing neural network based prediction models and which can limit their wider applicability in the industry. The first problem is that it appears neural network models are not readily available to a corrosion engineer. Therefore the first part of this paper describes a neural network model of CO2 corrosion which was created using a standard commercial software package and simple modelling strategies. It was found that such a model was able to capture practically all of the trends noticed in the experimental data with acceptable accuracy. This exercise has proven that a corrosion engineer could readily develop a neural network model such as the one described below for any problem at hand, given that sufficient experimental data exist. This applies even in the cases when the understanding of the underlying processes is poor. The second problem arises from cases when all the required inputs for a model are not known or can be estimated with a limited degree of accuracy. It seems advantageous to have models that can take as input a range rather than a single value. One such model, based on the so-called Monte Carlo approach, is presented. A number of comparisons are shown which have illustrated how a corrosion engineer might use this approach to rapidly test the sensitivity of a model to the uncertainities associated with the input parameters. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
ABSTRACT Soybean cultivation is increasing rapidly in the region of Alto Vale do Itajaí, State of Santa Catarina, where there is a predominance of silt soils. The objective of this work was to evaluate the content of primary macronutrients in shoots and shoot and root vegetative growth of soybean (Glicine max L. Merrill) grown in a silt-loam soil under different compactation densities and moisture levels. A randomized block design in a 4x4 factorial arrangement was used, with four compactation densities: 1.00; 1.20; 1.40 and 1.60 Mg m-3, and four soil moisture levels: 0.130; 0.160; 0.190 and 0.220 kg kg-1 and four replications. Each pot consisted of the overlapping of three 150-mm PVC rings, where soil was maintained in the higher and lower part of the pot with a density of 1.00 Mg m-3 and in the intermediate ring, the compactation densities were increased. Values of soil density higher than 120 Mg m-3 negatively affected N, P and K uptake by soybean plants, as well as the plant mass of the shoots and roots. The higher levels of soil moisture reduced the compaction effect and promoted better absorption of P and K.
Resumo:
A absorção química de dióxido de carbono (CO2) através de soluções aquosas de aminas tem sido estudada nos últimos anos devido à preocupação ambiental face ao aquecimento global. Nestes estudos, foram tidos como principais objectivos a realização de ensaios preliminares de absorção e desabsorção de CO2 em soluções aquosas de aminas bem como a construção de uma instalação piloto para a mesma finalidade. Inicialmente, a nível laboratorial, procedeu-se à absorção de CO2 através de soluções aquosas de aminas. As aminas utilizadas nestes estudos foram a monoetanolamina (MEA), etilenodiamina (EDA), 1,6- hexanodiamina (HDA) e piperazina anidra (PZ). A absorção de CO2 através destas aminas foi realizada experimentalmente às condições normais de pressão e temperatura. A concentração das soluções aquosas foi de 20% em massa de cada amina. Foram também realizados estudos de regeneração das soluções aquosas de aminas saturadas de CO2 em banho de glicerina, para determinar as condições de regeneração. Para além disso, observou-se o estado físico das aminas no estado puro até saturação com CO2 para garantir a não ocorrência de danos a nível de entupimento numa posterior utilização na instalação piloto. Por fim, voltaram-se a repetir todos estes ensaios experimentais utilizando-se, em vez da água destilada, um solvente polar aprótico, dimetilsulfóxido (DMSO). Numa segunda fase destes estudos, a absorção de CO2 através de soluções aquosas de aminas foi investigada experimentalmente numa instalação piloto. O objectivo era utilizar nesta fase do estudo as mesmas aminas utilizadas nos ensaios preliminares mas uma vez que não se dispunha das quantidades necessárias de aminas e para a sua aquisição teria que se despender bastante tempo e dinheiro, utilizaram-se duas soluções aquosas de alcanolaminas. As alcanolaminas utilizadas no presente estudo foram a amina secundária dietanolamina (DEA) e a amina terciária N-metildietanolamina (MDEA), duas aminas amplamente utilizadas nas indústrias químicas e petroquímicas para a purificação dos gases de combustão. A absorção de CO2 através destas duas alcanolaminas foi realizada experimentalmente às condições normais de pressão e temperatura. As concentrações das soluções aquosas foram de (10, 20 e 30) % em massa de MDEA e de DEA. O processo de adição de cloreto de bário (BaCl2.2H2O) às alcanolaminas ajuda à formação de carbonato de bário, quando o CO2 passa através da solução de alcanolamina. A quantidade de carbonato de bário formado foi utilizado para determinar a solubilidade do CO2 (mol CO2/mol alcanolamina). O principal desafio na captura de CO2 dos gases de combustão é o de reduzir o consumo de energia necessária para a regeneração do solvente. Deste modo, foram também realizados estudos de regeneração das soluções de alcanolaminas saturadas, para determinar as condições de regeneração. Os resultados obtidos, a nível laboratorial, revelaram que uma amina secundária (PZ) e uma amina primária de cadeia longa (HDA) são mais favoráveis ao processo de absorção e regeneração de CO2. No entanto, e devido a essa mesma estrutura molecular, necessitam de maiores valores de temperaturas para desabsorver o CO2. Garantiu-se poder trabalhar com as quatro aminas no estado puro em estudos futuros, na instalação piloto, garantindo que não ocorrerão danos a nível de entupimento. Relativamente ao solvente utilizado concluiu-se que um solvente polar aprótico não é um solvente favorável para estes estudos. Os resultados obtidos, na instalação piloto, revelaram que a amina terciária, MDEA, consegue absorver maiores quantidades de CO2 do que a amina secundária, EDA, bem como é a mais fácil de regenerar com menor perda de capacidade de absorção do que a EDA.
Resumo:
Pregnancy is a dynamic state and the placenta is a temporary organ that, among other important functions, plays a crucial role in the transport of nutrients and metabolites between the mother and the fetus, which is essential for a successful pregnancy. Among these nutrients, glucose is considered a primary source of energy and, therefore, fundamental to insure proper fetus development. Several studies have shown that glucose uptake is dependent on several morphological and biochemical placental conditions. Oxidative stress results from the unbalance between reactive oxygen species (ROS) and antioxidants, in favor of the first. During pregnancy, ROS, and therefore oxidative stress, increase, due to increased tissue oxygenation. Moreover, the relation between ROS and some pathological conditions during pregnancy has been well established. For these reasons, it becomes essential to understand if oxidative stress can compromise the uptake of glucose by the placenta. To make this study possible, a trophoblastic cell line, the BeWo cell line, was used. Experiments regarding glucose uptake, either under normal or oxidative stress conditions, were conducted using tert-butylhydroperoxide (tBOOH) as an oxidative stress inducer, and 3H-2-deoxy-D-glucose (3H-DG) as a glucose analogue. Afterwards, studies regarding the involvement of glucose facilitative transporters (GLUT) and the phosphatidylinositol 3-kinases (PI3K) and protein kinase C (PKC) pathways were conducted, also under normal and oxidative stress conditions. A few antioxidants, endogenous and from diet, were also tested in order to study their possible reversible effect of the oxidative effect of tBOOH upon apical 3H-DG uptake. Finally, transepithelial studies gave interesting insights regarding the apical-to-basolateral transport of 3H-DG. Results showed that 3H-DG uptake, in BeWo cells, is roughly 50% GLUT-mediated and that tBOOH (100 μM; 24h) decreases apical 3H-DG uptake in BeWo cells by about 33%, by reducing both GLUT- (by 28%) and non-GLUT-mediated (by 40%) 3H-DG uptake. Uptake of 3H-DG and the effect of tBOOH upon 3H-DG uptake are not dependent on PKC and PI3K. Moreover, the effect of tBOOH is not associated with a reduction in GLUT1 mRNA levels. Resveratrol, quercetin and epigallocatechin-3-gallate, at 50 μM, reversed, by at least 45%, the effect of tBOOH upon 3H-DG uptake. Transwell studies show that the apical-to-basolateral transepithelial transport of 3H-DG is increased by tBOOH.In conclusion, our results show that tBOOH caused a marked decrease in both GLUT and non-GLUT-mediated apical uptake of 3H-DG by BeWo cells. Given the association of increased oxidative stress levels with several important pregnancy pathologies, and the important role of glucose for fetal development, the results of this study appear very interesting.
Resumo:
The construction industry keeps on demanding huge quantities of natural resources, mainly minerals for mortars and concrete production. The depletion of many quarries and environmental concerns about reducing the dumping of construction and demolition waste in quarries have led to an increase in the procuring and use of recycled aggregates from this type of waste. If they are to be incorporated in concrete and mortars it is essential to know their properties to guarantee the adequate performance of the end products, in both mechanical and durability-related terms. Existing regulated tests were developed for natural aggregates, however, and several problems arise when they are applied to recycled aggregates, especially fine recycled aggregates (FRA). This paper describes the main problems encountered with these tests and proposes an alternative method to determine the density and water absorption of FRA that removes them. The use of sodium hexametaphosphate solutions in the water absorption test has proven to improve its efficiency, minimizing cohesion between particles and helping to release entrained air.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
One of the biggest challenges for humanity is global warming and consequently, climate changes. Even though there has been increasing public awareness and investments from numerous countries concerning renewable energies, fossil fuels are and will continue to be in the near future, the main source of energy. Carbon capture and storage (CCS) is believed to be a serious measure to mitigate CO2 concentration. CCS briefly consists of capturing CO2 from the atmosphere or stationary emission sources and transporting and storing it via mineral carbonation, in oceans or geological media. The latter is referred to as carbon capture and geological storage (CCGS) and is considered to be the most promising of all solutions. Generally it consists of a storage (e.g. depleted oil reservoirs and deep saline aquifers) and sealing (commonly termed caprock in the oil industry) formations. The present study concerns the injection of CO2 into deep aquifers and regardless injection conditions, temperature gradients between carbon dioxide and the storage formation are likely to occur. Should the CO2 temperature be lower than the storage formation, a contractive behaviour of the reservoir and caprock is expected. The latter can result in the opening of new paths or re-opening of fractures, favouring leakage and compromising the CCGS project. During CO2 injection, coupled thermo-hydro-mechanical phenomena occur, which due to their complexity, hamper the assessment of each relative influence. For this purpose, several analyses were carried out in order to evaluate their influences but focusing on the thermal contractive behaviour. It was finally concluded that depending on mechanical and thermal properties of the pair aquifer-seal, the sealing caprock can undergo significant decreases in effective stress.
Resumo:
We analyze the low frequency absorption cross section of minimally coupled massless scalar fields by different kinds of charged static black holes in string theory, namely the D1–D5 system in d=5 and a four dimensional dyonic four-charged black hole. In each case we show that this cross section always has the form of some parameter of the solution divided by the black hole Hawking temperature. We also verify in each case that, despite its explicit temperature dependence, such quotient is finite in the extremal limit, giving a well defined cross section. We show that this precise explicit temperature dependence also arises in the same cross section for black holes with string \alpha' corrections: it is actually induced by them.
Resumo:
The purpose of this paper is to study the possible differences among countries as CO2 emitters and to examine the underlying causes of these differences. The starting point of the analysis is the Kaya identity, which allows us to break down per capita emissions in four components: an index of carbon intensity, transformation efficiency, energy intensity and social wealth. Through a cluster analysis we have identified five groups of countries with different behavior according to these four factors. One significant finding is that these groups are stable for the period analyzed. This suggests that a study based on these components can characterize quite accurately the polluting behavior of individual countries, that is to say, the classification found in the analysis could be used in other studies which look to study the behavior of countries in terms of CO2 emissions in homogeneous groups. In this sense, it supposes an advance over the traditional regional or rich-poor countries classifications .
Resumo:
NORTH SEA STUDY OCCASIONAL PAPER No. 123
Resumo:
NORTH SEA STUDY OCCASIONAL PAPER No. 112
Resumo:
The design of European mitigation policies requires a detailed examination of the factors explaining the unequal emissions in the different countries. This research analyzes the evolution of inequality in CO2 per capita emissions in the European Union (EU-27) in the 1990-2006 period and its explanatory factors. For this purpose, we decompose the Theil index of inequality into the contributions of the different Kaya factors. The decomposition is also applied to the inequality between and within groups of countries (North Europe, South Europe, and East Europe). The analysis shows an important reduction in inequality, to a large extent due to the smaller differences between groups and because of the lower contribution of the energy intensity factor. The importance of the GDP per capita factor increases and becomes the main explanatory factor. However, within the different groups of countries the carbonization index appears to be the most relevant factor in explaining inequalities.
Resumo:
Studies have shown that both carbon dioxide (CO2) and octenol (1-octen-3-ol) are effective attractants for mosquitoes. The objective of the present study was to evaluate the attractiveness of 1-octen-3-ol and CO2 for diurnal mosquitoes in the southeastern Atlantic forest. A Latin square experimental design was employed with four treatments: CDC-light trap (CDC-LT), CDC-LT and 1-octen-3-ol, CDC-LT and CO2 and CDC-LT with 1-octen-3-ol and CO2. Results demonstrated that both CDC-CO2 and CDC-CO2-1-octen-3-ol captured a greater number of mosquito species and specimens compared to CDC-1-octen-3-ol; CDC-LT was used as the control. Interestingly, Anopheles (Kerteszia) sp. was generally attracted to 1-octen-3-ol, whereas Aedes serratus was the most abundant species in all Latin square collections. This species was recently shown to be competent to transmit the yellow fever virus and may therefore play a role as a disease vector in rural areas of Brazil.